...
首页> 外文期刊>Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment >Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes
【24h】

Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

机译:用于质子CT的高粒度数字跟踪量热仪中的质子跟踪

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeter was originally designed for the reconstruction of high-energy electromagnetic showers for the ALICE-FoCal project. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter concept. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. High energy protons traversing the detector leave a track through the sensor layers. These tracks are spread out through charge diffusion processes. A charge diffusion model is applied for acquisition of estimates of the deposited energy of the protons in each sensor layer by using the size of the charge diffused area. A model fit of the Bragg Curve is applied to each reconstructed track and through this, estimating the residual range of each proton. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to handle an effective proton frequency of 1 MHz by using 500 concurrent proton tracks in each readout frame, which is at the high end range of present similar prototypes. A future further optimized prototype will enable a high-speed and more accurate determination of the ranges of individual protons in a therapeutic beam.
机译:迄今为止,质子的放射疗法利用来自X射线CT的信息来估计患者所穿行的组织的质子阻止能力。从X射线衰减到组织中质子阻止能力的转换引入了范围的2-3%的范围不确定性,这些不确定性导致增加了增加到患者目标体积的必要计划余量。成像方法和模态,例如双能CT和质子CT,在寻求获得尽可能好的质子阻止能力估计时已经考虑在内。在这项研究中,数字跟踪量热仪以质子CT的概念验证为基准。数字跟踪量热仪最初设计用于ALICE-FoCal项目的高能电磁淋浴器的重建。提出的原型构成了使用单一技术进行跟踪和量热的质子CT系统的基础。这一优势简化了质子CT系统组装的设置并降低了成本,这是数字跟踪量热仪概念的独特功能。来自荷兰格罗宁根KVI-CART的AGORFIRM光束线的数据和蒙特卡洛模拟结果用于开发跟踪算法,以估算大量并发质子迹线的残差范围。穿过检测器的高能质子在传感器层上留下一条轨迹。这些迹线通过电荷扩散过程散布开来。通过使用电荷扩散区域的大小,将电荷扩散模型应用于获取每个传感器层中质子沉积能量的估计值。将布拉格曲线的模型拟合应用于每个重建的轨迹,并据此估算每个质子的残差范围。目前可以估计单个质子的范围为4%。通过在每个读取帧中使用500个并发质子轨道,该原型的读取系统能够处理1 MHz的有效质子频率,这在当前类似原型的高端范围内。未来进一步优化的原型将能够高速,更准确地确定治疗束中单个质子的范围。

著录项

  • 来源
  • 作者单位

    Department of Oncology and Medical Physics, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway,Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen, Norway;

    Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen, Norway;

    Kernfysisch Versneller Instituut, University of Groningen, NL-9747 AA Groningen, The Netherlands;

    Nikhef, Utrecht University, Postbox 41882,1009 DB Amsterdam, The Netherlands;

    Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen, Norway;

    Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen, Norway;

    Department of Electrical Engineering, Bergen University College, Postbox 7030, 5020 Bergen, Norway;

    Department of Oncology and Medical Physics, Haukeland University Hospital, Postbox 1400, 5021 Bergen, Norway;

    Nikhef, Utrecht University, Postbox 41882,1009 DB Amsterdam, The Netherlands;

    Nikhef, Utrecht University, Postbox 41882,1009 DB Amsterdam, The Netherlands;

    Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen, Norway;

    Nikhef, Utrecht University, Postbox 41882,1009 DB Amsterdam, The Netherlands;

    Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen, Norway;

    Nikhef, Utrecht University, Postbox 41882,1009 DB Amsterdam, The Netherlands;

    Department of Physics and Technology, University of Bergen, Postbox 7803, 5020 Bergen, Norway;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Proton therapy; Proton CT; Monte Carlo; Particle tracking; Calorimeter; Proton range estimation;

    机译:质子治疗;质子CT;蒙特卡洛;粒子跟踪;量热计质子范围估计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号