...
首页> 外文期刊>Nuclear fusion >OVERVIEW OF DT RESULTS FROM TFTR
【24h】

OVERVIEW OF DT RESULTS FROM TFTR

机译:TFTR的DT结果概述

获取原文
获取原文并翻译 | 示例
           

摘要

Experiments with plasmas having nearly equal concentrations of deuterium and tritium have been carried out on TFTR. To date (September 1995), the maximum fusion power has been 10.7 MW, using 39.5 MW of neutral beam heating, in a supershot discharge and 6.7 MW in a high β_p discharge following a current ramp-down. The fusion power density in the core of the plasma has reached 2.8 MW/m~3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER). The energy confinement time τ_E is observed to increase in DT, relative to D plasmas, by 20% and the n_i(0) · T_i(0) · τ_E product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter H mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high β_p discharges. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP simulations assuming classical confinement. Measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from helium gas puffing experiments. The loss of energetic alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha particle driven instabilities has yet been observed. ICRF heating of a DT plasma, using the second harmonic of tritium, has been demonstrated. DT experiments on TFTR will continue both to explore the physics underlying the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.
机译:已经在TFTR上进行了氘和tri浓度几乎相等的等离子体实验。迄今为止(1995年9月),最大熔化功率为10.7 MW,在一次瞬时放电后,在一次超级放电中使用39.5 MW中性束加热,在β_p高放电中使用6.7 MW,中性束加热。等离子体核心的聚变功率密度已达到2.8 MW / m〜3,超过了国际热核实验堆(ITER)的预期。相对于D等离子体,能量约束时间τ_E相对于D等离子体增加了20%,n_i(0)·T_i(0)·τ_E乘积增加了55%。热密闭性的改善主要是由于超级喷射和限制器H模式放电中离子热导率的降低引起的。大量注入锂粒料将限制时间增加到0.27 s,并在超级放电和高β_p放电中都允许更高的电流操作。已对封闭的α粒子进行了首次测量,发现与假定经典封闭的TRANSP模拟结果非常吻合。 α灰分布的测量值已与使用氦气喷吹实验的颗粒传输系数的模拟结果进行了比较。第一次轨道损失机制很好地描述了高能α粒子向船舶底部检测器的损失。尚未观察到由于α粒子驱动的不稳定性而造成的损失。已经证明了使用plasma的二次谐波对DT等离子体进行ICRF加热。在TFTR上进行的DT实验将继续探索ITER设计基础的物理学,并研究与先进托卡马克反应堆相关的一些物理问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号