首页> 外文期刊>Nuclear fusion >Study of anomalous inward drift in tokamaks by transport analysis and simulations
【24h】

Study of anomalous inward drift in tokamaks by transport analysis and simulations

机译:托卡马克异常向内漂移的输运分析与模拟研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The origin of the anomalous inward drift is explored by transport analysis of Ohmic, L- and H-mode discharges in ASDEX Upgrade using a special version of the 1.5-D BALDUR transport code. It is shown that the anomalous particle pinch significantly affects the density profile, in contrast to the Ware pinch. The measured density profiles can be modelled by the anomalous inward drift velocity v{sub}(in) = C{sub}v2xD/ρ{sub}w(x{sub}s){sup}2) with C{sub}v equal to 0.2 for H-mode and 1.1 for Ohmic plasmas and by a strongly rising v{sub}(in)/D near the edge. Here, x =ρ/ρ{sub}w and x{sub}s = ρ{sub}s/ρ{sub}w with effective radii ρ, ρ{sub}w and ρ{sub}s of flux surface, wall contour and separatrix contour, respectively. At low densities, beam fuelling alone yields peaked density profiles. With increasing density the beam fuelling is shifted to the edge which causes the observed density flattening. Evaluation of measured electron density and temperature profiles in deuterium and hydrogen discharges with various heating schemes yields C{sub}v α (L{sub}(T{sub}e)){sup}(-2) with L{sub}(T{sub}e) the electron temperature gradient length. A semi-empirical scaling v{sub}(in) = C{sub}t(ρ{sub}s/L{sub}(T{sub}e)){sup}2D/(ρ{sub}wx) is set up and validated against ASDEX Upgrade, DIII-D, JET and ASDEX discharges. It is shown to work in the core and edge regions of Ohmic, L- and H-mode plasmas. The ratio v{sub}(in)/D is independent of density, plasma current, toroidal magnetic field, hydrogenic atomic mass number, collisionality and Z{sub}(eff). The anomalous inward flux is driven by the square of the electron temperature gradient. Simulations of ITER using the new v{sub}(in) scaling predict peaked density profiles for gas puffed scenarios because of central heating due to alpha particles.
机译:通过使用特殊版本的1.5-D BALDUR运输代码在ASDEX升级版中通过欧姆,L和H模式放电的运输分析来探索异常向内漂移的起源。结果表明,与Ware收缩相比,异常颗粒收缩会显着影响密度分布。可以通过反常向内漂移速度v {sub}(in)= C {sub} v2xD /ρ{sub} w(x {sub} s){sup} 2)与C {sub} v来对测得的密度分布进行建模对于H型等于0.2,对于欧姆等离子体等于1.1,并且在边缘附近的v {sub}(in)/ D急剧上升。在此,x =ρ/ρ{sub} w和x {sub} s =ρ{sub} s /ρ{sub} w,通量表面,壁的有效半径为ρ,ρ{sub} w和ρ{sub} s等高线和setritrix等高线。在低密度下,仅使用束燃料可产生峰值密度曲线。随着密度的增加,光束加注移动到边缘,这导致观察到的密度变平。用各种加热方案评估氘和氢放电中测得的电子密度和温度分布,得出C {sub} vα(L {sub}(T {sub} e)){sup}(-2)与L {sub}( T {e} e)电子温度梯度长度。半经验定标v {sub}(in)= C {sub} t(ρ{sub} s / L {sub}(T {sub} e)){sup} 2D /(ρ{sub} wx)为设置并针对ASDEX升级,DIII-D,JET和ASDEX排放进行了验证。它可以在欧姆,L和H模式等离子体的核心和边缘区域工作。比率v {sub}(in)/ D与密度,等离子体电流,环形磁场,氢原子质量数,碰撞性和Z {sub}(eff)无关。异常向内通量由电子温度梯度的平方驱动。使用新的v {sub}(in)标度对ITER进行的模拟预测了由于α粒子引起的中央加热,在充气情况下的峰值密度分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号