...
首页> 外文期刊>Nuclear fusion >On the merits of heating and current drive for tearing mode stabilization
【24h】

On the merits of heating and current drive for tearing mode stabilization

机译:加热和电流驱动的优点,用于稳定撕裂模式

获取原文
获取原文并翻译 | 示例
           

摘要

Neoclassical tearing modes (NTMs) are magnetohydrodynamic modes that can limit the performance of high β discharges in a tokamak, leading eventually to a plasma disruption. A NTM is sustained by the perturbation of the 'bootstrap' current, which is a consequence of the pressure flattening across a magnetic island. Control and suppression of this mode can be achieved by means of electron cyclotron waves (ECWs) which allow the deposition of highly localized power at the island location. The ECW power replenishes the missing bootstrap current by generating a current perturbation either inductively, through a temperature perturbation (electron cyclotron resonance heating), or non-inductively by direct current drive (electron cyclotron current drive). Although both methods have been applied successfully to experiments showing a predominance of ECRH for medium-sized limiter tokamaks (TEXTOR, T-10) and of ECCD for mid-to-large-sized divertor tokamaks (AUG, DIII-D, JT-60), conditions determining their relative importance are still unclear. We address this problem with a numerical study focused on the contributions of heating and current drive to the temporal evolution of NTMs as described by the modified Rutherford equation. For the effects of both heating as well as current drive, simple analytical expressions have been found in terms of an efficiency fore-factor times a 'geometrical' term depending on the power deposition width ω_(dep), location and modulation. When the magnetic island width ω equals the width of the deposition profile, ω ≈ ω_(dep), both geometric terms are practically identical. Whereas for current drive the geometric term approaches a constant for small island widths and is inversely proportional to (ω/ω_(dep))~2 for large island widths, the heating term approaches a constant for large island widths and is proportional to (ω/ω_(dep)) for small island widths. For medium-sized tokamaks (TEXTOR, AUG) the heating and current drive efficiencies are of the same order of magnitude, whereas in a future, large reactor like ITER the current drive efficiency is expected to be significantly larger.
机译:新古典撕裂模式(NTM)是磁流体动力学模式,可以限制托卡马克中高β放电的性能,最终导致等离子体破裂。 NTM由“自举”电流的扰动来维持,这是整个磁岛上压力趋于平坦的结果。这种模式的控制和抑制可以通过电子回旋波(ECW)来实现,该回旋波可将高度局部化的功率沉积在孤岛位置。 ECW功率通过电感性地通过温度扰动(电子回旋加速器共振加热)或非电感性地通过直流驱动(电子回旋加速器电流驱动)产生电流扰动来补充缺少的自举电流。尽管这两种方法都已成功应用于显示中型限制器托卡马克(TEXTOR,T-10)的ECRH和中型至大型偏滤器托卡马克(AUG,DIII-D,JT-60)的ECCD的实验),尚不清楚确定其相对重要性的条件。我们通过一个数值研究解决了这个问题,该数值研究着重于加热和电流驱动对NTM的时间演化的贡献,如修改后的卢瑟福方程所描述的。对于加热和电流驱动的影响,已经找到了简单的解析表达式,其计算公式为效率前因数乘以“几何”项,具体取决于功率沉积宽度ω_(dep),位置和调制。当磁岛宽度ω等于沉积轮廓的宽度ω≈ω_(dep)时,两个几何项实际上是相同的。对于电流驱动,对于小岛宽,几何项接近一个常数,对于大岛宽与(ω/ω_(dep))〜2成反比,而对于大岛宽,加热项接近一个常数,并且与(ω /ω_(dep))以获得较小的岛宽。对于中型托卡马克(TEXTOR,AUG),加热效率和电流驱动效率处于相同的数量级,而在将来,像ITER这样的大型电抗器,预计电流驱动效率将大大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号