...
首页> 外文期刊>Nuclear fusion >Active particle control experiments and critical particle flux discriminating between the wall pumping and fuelling in the compact plasma wall interaction device CPD spherical tokamak
【24h】

Active particle control experiments and critical particle flux discriminating between the wall pumping and fuelling in the compact plasma wall interaction device CPD spherical tokamak

机译:紧凑型等离子壁相互作用装置CPD球形托卡马克中的主动粒子控制实验和临界粒子通量区分壁泵和燃料

获取原文
获取原文并翻译 | 示例
           

摘要

Two approaches associated with wall recycling have been performed in a small spherical tokamak device CPD (compact plasma wall interaction experimental device), that is, (1) demonstration of active particle recycling control, namely, 'active wall pumping' using a rotating poloidal limiter whose surface is continuously gettered by lithium and (2) a basic study of the key parameters which discriminates between 'wall pumping and fuelling'. For the former, active control of 'wall pumping' has been demonstrated during 50 kW RF current drive discharges whose pulse length is typically ~300 ms. Although the rotating limiter is located at the outer board, as soon as the rotating drum is gettered with lithium, hydrogen recycling measured with H_α spectroscopy decreases by about a factor of 3 not only near the limiter but also in the centre stack region. Also, the oxygen impurity level measured with O_Ⅱ spectroscopy is reduced by about a factor of 3. As a consequence of the reduced recycling and impurity level, RF driven current has nearly doubled at the same vertical magnetic field. For the latter, global plasma wall interaction with plasma facing components in the vessel is studied in a simple torus produced by electron cyclotron waves with I_p < 1 kA. A static gas balance (pressure measurement) without external pumping systems has been performed to investigate the role of particle flux on a transition of 'wall fuelling' to 'wall pumping'. It is found that a critical particle flux exists to discriminate between them. Beyond the critical value, a large fraction (~80%) of pressure drop ('wall pumping') is found, suggesting that almost all injected particles are retained in the wall. Below it, a significant pressure rise ('wall fuelling') is found, which indicates that particles are fuelled from the wall during/just after the discharge. Shot history effects (integrated particle recycling behaviour from the plasma facing surfaces) are seen on that the critical particle flux is reducing from 0.8 × 10~(-4) to ~0.1 × 10~(-4) Torr during the experimental campaign (~3000 shots). In the wall pumping pressure range the wall pumping fraction is reduced with increasing surface temperature up to 150℃.
机译:在小型球形托卡马克装置CPD(紧凑型等离子壁相互作用实验装置)中已执行了与壁回收相关的两种方法,即(1)演示了主动粒子回收控制,即使用旋转极向限制器进行的“主动壁泵送” (2)区分“壁式抽油和加油”的关键参数的基础研究。对于前者,已经证明了在50 kW射频电流驱动放电期间对“壁泵”的主动控制,其脉冲长度通常约为300 ms。尽管旋转限制器位于外侧板上,但是一旦旋转滚筒被锂吸收,用H_α光谱法测得的氢气再循环不仅会在限制器附近而且在中心烟囱区域减少约3倍。而且,用O_Ⅱ光谱仪测得的氧杂质水平降低了约3倍。由于循环利用和杂质水平降低,在相同的垂直磁场下,RF驱动电流几乎增加了一倍。对于后者,在由I_p <1 kA的电子回旋波产生的简单圆环中,研究了整体等离子体壁与容器中面向等离子体的组件的相互作用。在没有外部泵送系统的情况下进行了静态气体平衡(压力测量),以研究颗粒通量在“壁式加油”向“壁式加油”过渡中的作用。发现存在临界粒子通量以区别它们。超过临界值,发现很大一部分(〜80%)的压降(“壁泵”),表明几乎所有注入的颗粒都保留在壁中。在其下方,发现显着的压力上升(“壁加油”),这表明在放电过程中/刚从壁排出颗粒时便从壁上加了燃料。在实验过程中,临界粒子通量从0.8×10〜(-4)降低到〜0.1×10〜(-4)Torr,由此证明了发射历史效应(从面对等离子体的表面进行的整体粒子再循环行为)(〜 3000张)。在壁泵送压力范围内,壁泵送分数随表面温度升高至150℃而降低。

著录项

  • 来源
    《Nuclear fusion》 |2009年第5期|180-188|共9页
  • 作者单位

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    National Institute for Fusion Seience, Toki, Japan;

    IGSES, Kyushu University, Kasuga. Fukuoka, 816-8580, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    Plasma Research Center. University of Tsukuba, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    Mechanical System Engineering. Graduate School of Engineering, Hiroshima University. Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, Japan;

    Department of Mechanical Science and Engineering, Graduate School of Engineering, Kyoto University, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    IGSES, Kyushu University, Kasuga. Fukuoka, 816-8580, Japan;

    IGSES, Kyushu University, Kasuga. Fukuoka, 816-8580, Japan;

    IGSES, Kyushu University, Kasuga. Fukuoka, 816-8580, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

    RIAM, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    plasma-material interactions; boundary layer effects;

    机译:等离子体与材料的相互作用边界层效应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号