...
首页> 外文期刊>Nuclear fusion >Non-inductive current drive and transport in high β_N plasmas in JET
【24h】

Non-inductive current drive and transport in high β_N plasmas in JET

机译:JET中高β_N等离子体中的无感电流驱动和传输

获取原文
获取原文并翻译 | 示例
           

摘要

A route to stationary MHD stable operation at high β_n has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total βN ≈ 3.3 and stationary (during high power phase) βN ≈ 3 have been achieved by applying the feedback control of βN with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a ±22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E × B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources.
机译:通过优化电流加速,加热开始时间和中性束注入(NBI)功率的波形,欧洲联合圆环(JET)已探索了在高β_n条件下实现稳态MHD稳定运行的途径。在这些情况下,当前的上升伴随着等离子体预热(或者在当前的平顶之前启动了NBI),并且在当前的平顶期间施加了高达22 MW的NBI功率。在考虑的放电中,通过在具有单调或扁平铁心安全系数分布且没有内部传输屏障的配置中应用具有NBI功率的βN反馈控制,可以实现瞬态总βN≈3.3和静止(在大功率阶段)βN≈3 (ITB)。通过使用TRANSP和ASTRA代码在此情况下分析了这种情况下的传输和当前驱动器。用TRANSP进行的解释性分析表明,50-70%的电流是非感应驱动的。该电流的一半归因于自举电流,自举电流具有广泛的轮廓,因为有意避免了ITB。 GLF23传输模型在探索的参数空间上的测量值预测温度分布在±22%的差异内。用该模型进行的预测模拟表明,在这种情况下,E×B旋转剪切对热离子传输起着重要作用,使离子温度升高多达40%。通过在较宽的参数空间中应用在给定参考场景的自洽仿真中验证的运输和电流驱动模型,可以估算出JET完全无感固定运行的要求。结果表明,由GLF23模型预测的温度分布图的强刚度限制了较大加热功率下的自举电流。在这种情况下,如果完全没有外部ITB,则完全依靠外部非感应电流驱动源来进行完全非感应操作可能会非常昂贵。

著录项

  • 来源
    《Nuclear fusion》 |2009年第5期|220-235|共16页
  • 作者单位

    EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3D, UK;

    EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3D, UK;

    EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3D, UK;

    Princeton Plasma Physics Laboratory, Princeton, NJ, 08543-0451, USA;

    Associazione EURATOM/ENEA sulla Fusione, Frascati, Italy;

    EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3D, UK;

    General Atomics, San Diego, CA 92186-5608, USAc;

    EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3D, UK;

    Association Euratom CEA, CEA/DSM/IRFM, Cadarache, 13108 Saint-Paul-lez-Durance, France;

    EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3D, UK;

    General Atomics, San Diego, CA 92186-5608, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, 08543-0451, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ, 08543-0451, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    JET-EFDA, Culham Science Centre, Abingdon, Oxon OX 14 3DB, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号