...
首页> 外文期刊>Nuclear fusion >Overview of results from the Large Helical Device
【24h】

Overview of results from the Large Helical Device

机译:大型螺旋设备的结果概述

获取原文
获取原文并翻译 | 示例
           

摘要

The physical understanding of net-current-free helical plasmas has progressed in the Large Helical Device (LHD) since the last Fusion Energy Conference in Geneva, 2008. The experimental results from LHD have promoted detailed physical documentation of features specific to net-current-free 3D helical plasmas as well as complementary to the tokamak approach. The primary heating source is neutral beam injection (NBI) with a heating power of 23 MW, and electron cyclotron heating with 3.7 MW plays an important role in local heating and power modulation in transport studies. The maximum central density has reached 1.2 x 10~21 m~3 due to the formation of an internal diffusion barrier (IDB) at a magnetic field of 2.5 T. The IDB is maintained for 3 s by refuelling with repetitive pellet injection. In a different operational regime with moderate density less than 2 x 10~19m~3, a plasma with a central ion temperature reaching 5.6 keV exhibits the formation of an internal transport barrier (ITB). The ion thermal diffusivity decreases to the level predicted by neoclassical transport. In addition to the rotation driven by the momentum input due to tangential NBI, the existence of intrinsic torque to drive toroidal rotation is identified in the plasma with an ITB. This ITB is accompanied by an impurity hole which generates an impurity-free core. The impurity hole is due to a large outward convection of impurities in spite of the negative radial electric field. The magnitude of the impurity hole is enhanced in the magnetic configuration with a large helical ripple and for heavier atoms. Another mechanism for suppressing impurity contamination is identified at the plasma edge with a stochastic magnetic field. A helical system shares common physics issues with tokamaks such as 3D equilibria, transport in a stochastic magnetic field, plasma response to a resonant magnetic perturbation, divertor physics and the role of radial electric field and meso-scale structure.
机译:自2008年在日内瓦召开的上一届Fusion Energy会议以来,大型螺旋设备(LHD)对无净电流的螺旋等离子体的物理理解已有所发展。LHD的实验结果促进了对净电流特定特性的详细物理记录免费的3D螺旋等离子体以及tokamak方法的补充。主要的热源是中性束注入(NBI),加热功率为23 MW,3.7 MW的电子回旋加速器加热在运输研究中的局部加热和功率调制中起着重要作用。由于在2.5 T的磁场下形成了一个内部扩散屏障(IDB),所以最大中心密度已达到1.2 x 10〜21 m〜3。通过重复注入颗粒来加注IDB可以保持3 s。在中等密度小于2 x 10〜19m〜3的不同操作方案中,中心离子温度达到5.6 keV的等离子体会形成内部传输势垒(ITB)。离子的热扩散率降低到新古典传输所预测的水平。除了由切向NBI引起的动量输入所驱动的旋转外,还可以通过ITB在等离子体中识别出驱动环形旋转的内在扭矩。该ITB伴随有产生无杂质芯的杂质孔。尽管有负径向电场,杂质孔仍是由于杂质的较大向外对流所致。在具有大的螺旋形波纹且对于较重的原子的磁性结构中,杂质孔的大小得以提高。通过随机磁场在等离子体边缘处识别出另一种抑制杂质污染的机制。螺旋系统与托卡马克有共同的物理问题,例如3D平衡,在随机磁场中的传输,对共振磁扰动的等离子体响应,发散物理以及径向电场和介观尺度结构的作用。

著录项

  • 来源
    《Nuclear fusion》 |2011年第9期|p.263-274|共12页
  • 作者

    H. Yamada;

  • 作者单位

    National Institute for Fusion Science, Toki 509-5292, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号