...
首页> 外文期刊>Nuclear fusion >Alpha heating in ITER L-mode and H-mode plasmas
【24h】

Alpha heating in ITER L-mode and H-mode plasmas

机译:在ITER L模式和H模式等离子体中进行Alpha加热

获取原文
获取原文并翻译 | 示例
           

摘要

Predictions of alpha heating in ITER L-mode and H-mode DT plasmas are generated using the PTRANSP code. The baseline toroidal field (5.3 T), plasma current ramped to 15 MA and a flat electron density profile ramped to Greenwald fraction 0.85 are assumed. Various combinations of external heating by negative ion neutral beam injection, ion cyclotron resonance and electron cyclotron resonance are assumed to start half-way up the density ramp with the full power planned (P_(ext) = 73 MW). 50 s later the power is reduced to 50 MW to increase Q_(DT), and to prevent excessive heat flow to the divertor and walls as the alpha heating increases. The time evolution of plasma temperatures and bulk toroidal rotation v_φ are predicted assuming GLF23 and boundary parameters. Conservatively low temperatures (approx=0.6keV) and v_φapprox= 400 rad s~(-1) at the boundary {r/a approx=0.85) are assumed. Alternative options are used to predict v_φ and the flow-shearing rates induced by the neutral beam torques in order to assess effects of uncertainties. Option 1 assumes the momentum transport coefficient x_φ is half the energy transport coefficient x_i predicted consistently with the GLF23-predicted temperatures. With this assumption flow shearing does not have large effects on the energy transport, plasma temperatures and alpha heating. Option 2 uses GLF23 to predict v_φ directly. Higher flow-shearing rates and alpha heating powers are predicted for heating mixes with neutral beam heating. If the L→ H power threshold is twice the ITPA fit then the heating mixes with the highest neutral beam power (and the most alpha heating) transition to H-mode during the density ramp. Other heating mixes remain in L-mode. Predictions of H-mode temperatures and alpha heating depend sensitively on the assumed pedestal pressures. A scan in pedestal pressures is presented using the more pessimistic option 1. A linear increase in alpha heating with pedestal temperature and pressure is predicted.
机译:使用PTRANSP代码生成ITER L模式和H模式DT等离子体中的α加热预测。假定为基线环形场(5.3 T),等离子体电流增加到15 MA,平坦的电子密度分布增加到Greenwald分数0.85。假定通过负离子中性束注入,离子回旋共振和电子回旋共振进行的外部加热的各种组合以计划的全功率(P_(ext)= 73 MW)开始在密度斜坡的中途开始。 50 s之后,功率降低到50 MW,以提高Q_(DT),并随着alpha加热的增加,防止过多的热量流向偏滤器和壁。假设GLF23和边界参数,可以预测等离子体温度和整体环形旋转v_φ的时间演变。假设在边界{r / a近似= 0.85)处保守地较低的温度(大约= 0.6keV)和v_φapprox= 400 rad s〜(-1)。为了评估不确定性的影响,可以使用其他选项来预测v_φ和由中性梁扭矩引起的流切率。选项1假设动量传输系数x_φ是与GLF23预测温度一致预测的能量传输系数x_i的一半。在此假设下,流量剪切对能量传输,等离子体温度和α加热没有太大影响。选项2使用GLF23直接预测v_φ。对于带有中性束加热的加热混合物,预计会有更高的剪切流率和α加热功率。如果L→H功率阈值是ITPA拟合的两倍,则在密度上升过程中,加热与最高中性束功率(和最大α加热)混合到H模式。其他加热混合仍处于L模式。 H模式温度和α加热的预测敏感地取决于假定的基座压力。使用更悲观的选项1呈现了对基座压力的扫描。预测了Alpha加热随基座温度和压力的线性增加。

著录项

  • 来源
    《Nuclear fusion》 |2012年第1期|p.013001.1-013001.13|共13页
  • 作者

    R.V. Budny;

  • 作者单位

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号