...
首页> 外文期刊>Nuclear fusion >Investigation of a transient energetic charge exchange flux enhancement ('spike-on-tail') observed in neutral-beam-heated H-mode discharges in the National Spherical Torus Experiment
【24h】

Investigation of a transient energetic charge exchange flux enhancement ('spike-on-tail') observed in neutral-beam-heated H-mode discharges in the National Spherical Torus Experiment

机译:在国家球形圆环实验中,在中性束加热的H型放电中观察到的瞬态高能电荷交换通量增强(“尾钉”)的研究

获取原文
获取原文并翻译 | 示例
           

摘要

In the National Spherical Torus Experiment (NSTX), a large increase in the charge exchange neutral flux localized around the neutral beam (NB) injection full energy is measured using a neutral particle analyser. Termed the high-energy feature (HEF), it appears on the NB-injected energetic-ion spectrum only in discharges where tearing or kink-type modes (f< 50 kHz) are absent, toroidal Alfven eigenmode activity (f~50-150 kHz) is weak and global Alfven eigenmode (GAE) activity (f~400-1000 kHz) is robust. Compressional Alfven eigenmode activity (f > 1000 kHz) is usually sporadic or absent during the HEF event. The HEF exhibits growth times of △t~ 20-80 ms, durations spanning 100-600 ms and peak-to-base flux ratios up to H = F_(max)/F_(min)~10. In infrequent cases, a slowing-down distribution below the HEF energy can develop that continues to evolve over periods of order 100 ms, a time scale long compared with the typical fast-ion equilibration times. HEFs are observed only in H-mode (not L-mode) discharges with injected power P_b≥ 4MW and in the pitch range x ≡ v_‖/v~0.7-0.9; i.e. only for passing particles. Increases of order 10-30% in the measured neutron yield and total stored energy that are observed to coincide with the feature appear to be driven by concomitant broadening of measured T_c(r), T_i(r) and n_e(r) profiles and not the HEF itself. While the HEF has minimal impact on plasma performance, it nevertheless poses a challenging wave-particle interaction phenomenon to understand. Candidate mechanisms for HEF formation are developed based on quasilinear (QL) theory of wave-particle interaction. The only mechanism found to lead to the large NPA flux ratios, H = F_(max)/F_(min), observed in NSTX is the QL evolution of the energetic-ion distribution, F_b(E, x,r), in phase space. A concomitant loss of some particles is observed due to interaction through cyclotron resonance of the particles with destabilized modes having sufficiently high frequencies, f~700-1000 kHz, in the plasma frame that are tentatively identified as GAEs.
机译:在国家球形圆环实验(NSTX)中,使用中性粒子分析仪测量了位于中性束(NB)注入全能量周围的电荷交换中性通量的大幅增加。被称为高能特征(HEF),仅在不存在撕裂或扭结型模(f <50 kHz),环形Alfven本征模活动(f〜50-150)的放电中,才出现在NB注入的高能离子谱上kHz)很弱,全局Alfven本征模(GAE)活动(f〜400-1000 kHz)很强。 HEF事件期间偶发性或无压缩Alfven本征模式活动(f> 1000 kHz)。 HEF的生长时间为△t〜20-80 ms,持续时间跨度为100-600 ms,峰基通量比最高为H = F_(max)/ F_(min)〜10。在极少数情况下,可能会出现低于HEF能量的减速分布,并在100 ms量级的时间内持续发展,与典型的快速离子平衡时间相比,时间尺度长。 HEF仅在注入功率P_b≥4MW的H模式(非L模式)放电中且在节距范围x≡v _′/ v〜0.7-0.9时才观察到。即仅用于传递粒子。观测到的与特征相符的中子产率和总存储能量的量级增加10-30%似乎是由所测量的T_c(r),T_i(r)和n_e(r)轮廓的同时展宽驱动的,而不是HEF本身。尽管HEF对等离子体性能的影响很小,但它仍然构成了难以理解的波粒相互作用现象。基于波粒相互作用的准线性(QL)理论,开发了用于HEF形成的候选机制。在NSTX中观察到的导致NPA通量比率大的唯一机制为H = F_(max)/ F_(min)是相态中高能离子分布F_b(E,x,r)的QL演化空间。在等离子体框架中,由于通过回旋共振使粒子与不稳定的模式相互作用而观察到一些粒子的伴随损失,该不稳定模式具有足够高的频率(f〜700-1000 kHz),暂时被确定为GAE。

著录项

  • 来源
    《Nuclear fusion》 |2012年第1期|p.013014.1-013014.25|共25页
  • 作者单位

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Institute for Nuclear Research, 03680, Kyiv, Ukraine;

    Institute for Nuclear Research, 03680, Kyiv, Ukraine;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    University of California, Irvine, CA 90095, USA;

    University of California, Los Angeles, CA 90095, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Department of Applied Science, University of California, Davis, CA 95616, USA;

    Department of Engineering Physics, University of Wisconsin-Madison, Madison,WI 53706, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    University of California, Los Angeles, CA 90095, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Department of Applied Science, University of California, Davis, CA 95616, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Department of Engineering Physics, University of Wisconsin-Madison, Madison,WI 53706, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Department of Engineering Physics, University of Wisconsin-Madison, Madison,WI 53706, USA;

    Johns Hopkins University, Baltimore, MD 21218, USA;

    Johns Hopkins University, Baltimore, MD 21218, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号