...
首页> 外文期刊>Nuclear fusion >Progress in simulating turbulent electron thermal transport in NSTX
【24h】

Progress in simulating turbulent electron thermal transport in NSTX

机译:NSTX中湍流电子热传输模拟的进展

获取原文
获取原文并翻译 | 示例
           

摘要

Nonlinear simulations based on multiple NSTX discharge scenarios have progressed to help differentiate unique instability mechanisms and to validate with experimental turbulence and transport data. First nonlinear gyrokinetic simulations of microtearing turbulence in a high-beta NSTX H-mode discharge predict experimental levels of electron thermal transport that are dominated by magnetic flutter and increase with collisionality, roughly consistent with energy confinement times in dimensionless collisionality scaling experiments. Electron temperature gradient (ETG) simulations predict significant electron thermal transport in some low- and high-beta discharges when ion scales are suppressed by E × B shear. Although the predicted transport in H-modes is insensitive to variation in collisionality (inconsistent with confinement scaling), it is sensitive to variations in other parameters, particularly density gradient stabilization. In reversed shear L-mode discharges that exhibit electron internal transport barriers, ETG transport has also been shown to be suppressed nonlinearly by strong negative magnetic shear, s << 0. In many high-beta plasmas, instabilities which exhibit a stiff beta dependence characteristic of kinetic ballooning modes (KBMs) are sometimes found in the core region. However, they do not have a distinct finite beta threshold, instead transitioning gradually to a trapped electron mode (TEM) as beta is reduced to zero. Nonlinear simulations of this 'hybrid' TEM/KBM predict significant transport in all channels, with substantial contributions from compressional magnetic perturbations. As multiple instabilities are often unstable simultaneously in the same plasma discharge, even on the same flux surface, unique parametric dependencies are discussed which may be useful for distinguishing the different mechanisms experimentally.
机译:基于多种NSTX排放情景的非线性仿真已取得进展,可帮助区分独特的不稳定机制并通过实验湍流和传输数据进行验证。高βNSTX H模式放电中的微撕裂湍流的第一个非线性陀螺动力学模拟预测了电子热传递的实验水平,该水平由磁振子控制并且随着碰撞性的增加而提高,这与无量纲碰撞性缩放实验中的能量限制时间基本一致。电子温度梯度(ETG)模拟预测,当离子垢被E×B剪切抑制时,在某些低β和高β放电中,电子将发生大量热传输。尽管在H模式下预测的传输对碰撞性的变化不敏感(与约束缩放不一致),但对其他参数的变化(尤其是密度梯度稳定化)敏感。在具有电子内部传输壁垒的反向剪切L型放电中,也已显示出ETG传输会被强负磁剪切力s << 0非线性抑制。在许多高β等离子体中,不稳定性表现出严格的β依赖性有时在核心区域发现动态气球模式(KBM)。但是,它们没有明显的有限β阈值,而是随着β减小到零而逐渐过渡到俘获电子模式(TEM)。这种“混合” TEM / KBM的非线性模拟预测了在所有通道中的显着传输,其中压缩磁扰动的贡献很大。由于在相同的等离子体放电中,即使同时在相同的通量表面上,多个不稳定性通常常常同时不稳定,因此讨论了独特的参数依赖性,这可能有助于通过实验区分不同的机理。

著录项

  • 来源
    《Nuclear fusion》 |2013年第9期|093022.1-093022.13|共13页
  • 作者单位

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Lawrence Livermore National Laboratory, Livermore, CA 94551, USA;

    General Atomics, San Diego, CA 92186, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA;

    Lawrence Livermore National Laboratory, Livermore, CA 94551, USA;

    Nova Photonics Inc., Princeton, NJ 08540, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号