...
首页> 外文期刊>Nuclear fusion >Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment
【24h】

Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment

机译:最近在磁场-惯性融合实验中逆向配置的加热实验

获取原文
获取原文并翻译 | 示例
           

摘要

Magneto-inertial fusion (MIF) approaches take advantage of an embedded magnetic field to improve plasma energy confinement by reducing thermal conduction relative to conventional inertial confinement fusion (ICF). MIF reduces required precision in the implosion and the convergence ratio. Since 2008 (Wurden et al 2008 IAEA 2008 Fusion Energy Conf. (Geneva, Switzerland, 13-18 October) IC/P4-13 LA-UR-08-0796) and since our prior refereed publication on this topic (Degnan et al 2008 IEEE Trans. Plasma Sci. 36 80), AFRL and LANL have developed further one version of MIF. We have (1) reliably formed, translated, and captured field reversed configurations (FRCs) in magnetic mirrors inside metal shells or liners in preparation for subsequent compression by liner implosion; (2) imploded a liner with interior magnetic mirror field, obtaining evidence for compression of a 1.36 T field to 540 T; (3) performed a full system experiment of FRC formation, translation, capture, and imploding liner compression operation; (4) identified by comparison of 2D-MHD simulation and experiments factors limiting the closed-field lifetime of FRCs to about half that required for good liner compression of FRCs to multi-keV, 10~(19) ion cm~(-3), high energy density plasma (HEDP) conditions; and (5) designed and prepared hardware to increase that closed-field FRC lifetime to the required amount. Those lifetime experiments are now underway, with the goal of at least doubling closed-field FRC lifetimes and performing FRC implosions to HEDP conditions this year. These experiments have obtained imaging evidence of FRC rotation, and of initial rotation control measures slowing and stopping such rotation. Important improvements in fidelity of simulation to experiment have been achieved, enabling improved guidance and understanding of experiment design and performance.
机译:磁惯性融合(MIF)方法利用嵌入式磁场通过相对于常规惯性约束聚变(ICF)减少热传导来改善等离子体能量约束。 MIF降低了内爆和会聚比所需的精度。自2008年(Wurden等人,2008 IAEA 2008聚变能大会(瑞士,日内瓦,10月13日至18日)IC / P4-13 LA-UR-08-0796)以来,以及自我们先前就该主题引用的出版物以来(Degnan等人,2008年) IEEE Trans.Plasma Sci。36 80),AFRL和LANL开发了MIF的另一版本。我们(1)在金属外壳或衬套内部的磁镜中可靠地形成,平移和捕获了场反转配置(FRC),以准备通过衬套内爆进行后续压缩; (2)用一个内部磁镜场将一个内衬爆破,获得将1.36 T磁场压缩到540 T的证据; (3)对FRC的形成,平移,捕获和内衬压缩操作进行了完整的系统实验; (4)通过2D-MHD模拟和实验的比较确定了将FRC的封闭场寿命限制为FRC良好衬管压缩至多keV,10〜(19)离子cm〜(-3)所需的大约一半的因素。 ,高能量密度等离子体(HEDP)条件; (5)设计和准备硬件,以将近场FRC寿命增加到所需的数量。这些寿命试验正在进行中,目标是至少将近场FRC寿命加倍,并在今年对HEDP条件进行FRC爆破。这些实验已经获得了FRC旋转的成像证据,以及初始旋转控制措施可以减缓和停止这种旋转。在仿真逼真度方面,已经实现了重要的改进,从而可以更好地指导和理解实验设计和性能。

著录项

  • 来源
    《Nuclear fusion》 |2013年第9期|093003.1-093003.10|共10页
  • 作者单位

    Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, NM 87117, USA;

    Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, NM 87117, USA;

    Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, NM 87117, USA;

    Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, NM 87117, USA;

    Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, NM 87117, USA;

    Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, NM 87117, USA;

    Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, NM 87117, USA;

    Air Force Research Laboratory, Directed Energy Directorate, Kirtland Air Force Base, NM 87117, USA;

    Los Alamos National Laboratory, MS-E526, Los Alamos, NM 87545, USA;

    Los Alamos National Laboratory, MS-E526, Los Alamos, NM 87545, USA;

    Los Alamos National Laboratory, MS-E526, Los Alamos, NM 87545, USA;

    Los Alamos National Laboratory, MS-E526, Los Alamos, NM 87545, USA;

    Los Alamos National Laboratory, MS-E526, Los Alamos, NM 87545, USA;

    NumerEx, LLC, Albuquerque, NM 87106, USA;

    NumerEx, LLC, Albuquerque, NM 87106, USA;

    NumerEx, LLC, Albuquerque, NM 87106, USA;

    NumerEx, LLC, Albuquerque, NM 87106, USA;

    NumerEx, LLC, Albuquerque, NM 87106, USA;

    NumerEx, LLC, Albuquerque, NM 87106, USA;

    SAIC, Albuquerque, NM 81313, USA;

    SAIC, Albuquerque, NM 81313, USA;

    SAIC, Albuquerque, NM 81313, USA;

    SAIC, Albuquerque, NM 81313, USA;

    SAIC, Albuquerque, NM 81313, USA;

    VariTech Services, Albuquerque, NM 87112, USA;

    Department of Physics, University of Nevada, Reno, NV 89557, USA;

    Department of Physics, University of Nevada, Reno, NV 89557, USA;

    Department of Physics, University of Nevada, Reno, NV 89557, USA;

    Emeritus, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA;

    Guest Scientist, Los Alamos Scientific Laboratory, P-22, Los Alamos, NM 87545, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号