...
首页> 外文期刊>Nuclear fusion >Initial magnetic field compression studies using gas-puff Z-pinches and thin liners on COBRA
【24h】

Initial magnetic field compression studies using gas-puff Z-pinches and thin liners on COBRA

机译:在COBRA上使用充气Z型捏和薄衬套进行初始磁场压缩研究

获取原文
获取原文并翻译 | 示例
           

摘要

This magnetic compression of cylindrical liners filled with DT gas has promise as an efficient way to achieve fusion burn using pulsed-power machines. However, to avoid rapid cooling of the fuel by transfer of heat to the liner an axial magnetic field is required. This field has to be compressed during the implosion since the thermal insulation is more demanding as the compressed DT plasma becomes hotter and its volume smaller. This compression of the magnetic field is driven both by the imploding liner and plasma. To highlight how this magnetic field compression by the plasma and liner evolves we have separately studied Z-pinch implosions generated by gas puff and liner loads. The masses of the gas puff and liner loads were adjusted to match COBRA's current rise times. Our results have shown that Ne gas-puff implosions are well described by a snowplow model where electrical currents are predominately localized to the outer surface of the imploding plasma and the magnetic field is external to the imploding plasma. Liner implosions are dominated by the plasma ablation process on the inside surface of the liner and the electrical currents and magnetic fields are advected into the inner plasma volume; the sharp radial gradient associated with the snowplow process is not present.
机译:充满DT气体的圆柱形衬套的这种磁性压缩有望成为使用脉冲功率机器实现熔融燃烧的有效方法。然而,为了避免通过将热量传递到衬套而使燃料快速冷却,需要轴向磁场。在爆破期间必须压缩该场,因为随着压缩的DT等离子体变得更热并且其体积更小,对隔热的要求更高。磁场的压缩是由内衬和等离子体驱动的。为了突出由等离子体和衬管产生的这种磁场压缩如何演变,我们分别研究了由气体抽吸和衬管载荷产生的Z夹内爆。调整了吹气的质量和衬管负载,以匹配COBRA的电流上升时间。我们的结果表明,Ne气吹内爆由扫雪机模型很好地描述,其中电流主要局限在内爆等离子体的外表面,而磁场在内爆等离子体的外部。衬里的内爆主要由衬套内表面的等离子烧蚀工艺决定,电流和磁场被平流到内部等离子腔中。扫雪过程没有明显的径向梯度。

著录项

  • 来源
    《Nuclear fusion》 |2013年第8期|083006.1-083006.10|共10页
  • 作者单位

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    Department of Physics, Weizmann Institute of Science, Rehovot, Israel;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    Department of Physics, Weizmann Institute of Science, Rehovot, Israel;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    L3 Pulsed Sciences, San Leandro, CA, USA ,Janx, Piedmont, CA, USA;

    Janx, Piedmont, CA, USA;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

    Laboratory of Plasma Studies, Cornell University, Ithaca, NY, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号