...
首页> 外文期刊>Nuclear fusion >ELM control strategies and tools: status and potential for ITER
【24h】

ELM control strategies and tools: status and potential for ITER

机译:ELM控制策略和工具:ITER的现状和潜力

获取原文
获取原文并翻译 | 示例
           

摘要

Operating ITER in the reference inductive scenario at the design values of Ip = 15 MA and Qdt = 10 requires the achievement of good H-mode confinement that relies on the presence of an edge transport barrier whose pedestal pressure height is key to plasma performance. Strong gradients occur at the edge in such conditions that can drive magnetohydrodynamic instabilities resulting in edge localized modes (ELMs), which produce a rapid energy loss from the pedestal region to the plasma facing components (PFC). Without appropriate control, the heat loads on PFCs during ELMs in ITER are expected to become significant for operation in H-mode at I_p = 6-9 MA; operation at higher plasma currents would result in a very reduced life time of the PFCs. Currently, several options are being considered for the achievement of the required level of ELM control in ITER; this includes operation in plasma regimes which naturally have no or very small ELMs, decreasing the ELM energy loss by increasing their frequency by a factor of up to 30 and avoidance of ELMs by actively controlling the edge with magnetic perturbations. Smallo ELM regimes obtained by influencing the edge stability (by plasma shaping, rotational shear control, etc) have shown in present experiments a significant reduction of the ELM heat fluxes compared to type-I ELMs. However, so far they have only been observed under a limited range of pedestal conditions depending on each specific device and their extrapolation to ITER remains uncertain. ELM control by increasing their frequency relies on the controlled triggering of the edge instability leading to the ELM. This has been presently demonstrated with the injection of pellets and with plasma vertical movements; pellets having provided the results more promising for application in ITER conditions. ELM avoidance/suppression takes advantage of the fact that relatively small changes in the pedestal plasma and magnetic field parameters seem to have a large stabilizing effect on large ELMs. Application of edge magnetic field perturbation with non-axisymmetric fields is found to affect transport at the plasma edge and thus prevent the uncontrolled rise of the plasma pressure gradients and the occurrence of type-I ELMs. This paper compiles a brief overview of various ELM control approaches, summarizes their present achievements and briefly discusses the open issues regarding their application in ITER.
机译:在Ip = 15 MA和Qdt = 10的设计值下在参考电感情况下运行ITER要求获得良好的H模式限制,这取决于边缘传输势垒的存在,其边缘压力高度是等离子体性能的关键。在这样的条件下,边缘上会出现强梯度,从而导致磁流体动力学不稳定,从而导致边缘局部模式(ELM),从而导致从基座区域到面对等离子体的组件(PFC)的能量快速损失。如果没有适当的控制,则对于I_p = 6-9 MA的H模式操作,预计ITER ELM期间PFC的热负荷会变得很大。在较高的等离子体电流下运行会导致PFC的使用寿命大大缩短。目前,正在考虑几种选择,以实现所需的ITER ELM控制水平;这包括在自然没有或只有很小ELM的等离子体状态下进行操作,通过将其频率增加多达30倍来降低ELM能量损失,以及通过用磁扰动主动控制边缘来避免ELM。通过影响边缘稳定性(通过等离子体成形,旋转剪切控制等)获得的小/无ELM方案在本实验中已显示出与I型ELM相比,ELM热通量显着降低。但是,到目前为止,仅在有限范围的基座条件下才观察到它们,具体取决于每个特定的设备,并且它们对ITER的推断仍然不确定。通过增加其频率来进行ELM控制,这取决于导致ELM的边缘不稳定性的受控触发。目前已经通过注射药丸和血浆垂直运动证明了这一点。粒料提供了在ITER条件下应用更有希望的结果。 ELM避免/抑制利用了以下事实:基座等离子体和磁场参数的相对较小变化似乎对大型ELM具有较大的稳定作用。发现使用具有非轴对称场的边缘磁场摄动会影响等离子体边缘处的传输,从而防止等离子体压力梯度的不受控制的升高和I型ELM的出现。本文对各种ELM控制方法进行了简要概述,总结了它们目前的成就,并简要讨论了有关其在ITER中的应用的未解决问题。

著录项

  • 来源
    《Nuclear fusion》 |2013年第4期|043004.1-043004.24|共24页
  • 作者单位

    IPP Tokamak Scenario Development Division, MPI fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2,85748 Garching, Germany;

    ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance, France;

    F4E Joint Undertaking, Josep PI. 2, Torres Diagonal Litoral B3, 08019, Barcelona, Spain;

    oak Ridge National Laboratory, Box 2008, Oak Ridge, TN 37831, USA;

    CEA, IRFM, F-13108, Saint-Paul-lez-Durance, France;

    F4E Joint Undertaking, Josep PI. 2, Torres Diagonal Litoral B3, 08019, Barcelona, Spain;

    F4E Joint Undertaking, Josep PI. 2, Torres Diagonal Litoral B3, 08019, Barcelona, Spain;

    ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance, France;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94550, USA;

    ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance, France;

    JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK;

    JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK;

    EPFL, 1015 Lausanne, Switzerland;

    Forschungszentrum Jiilich, Institute of Energy Research, D-52425, Juelich, Germany;

    Japan Atomic Energy Agency, Naka Fusion Institute, Naka, 311-0193, Japan;

    General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA;

    CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK;

    IPP Tokamak Scenario Development Division, MPI fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2,85748 Garching, Germany;

    F4E Joint Undertaking, Josep PI. 2, Torres Diagonal Litoral B3, 08019, Barcelona, Spain;

    EPFL, 1015 Lausanne, Switzerland;

    Department of Physics, University of York, York, YO10 5DD, UK;

    Efremov Institute, St Petersburg, Russia;

    Forschungszentrum Jiilich, Institute of Energy Research, D-52425, Juelich, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号