...
首页> 外文期刊>Nuclear fusion >Disruptions, disruptivity and safer operating windows in the high-β spherical torus NSTX
【24h】

Disruptions, disruptivity and safer operating windows in the high-β spherical torus NSTX

机译:高β球形圆环NSTX中的干扰,干扰和更安全的操作窗口

获取原文
获取原文并翻译 | 示例
           

摘要

This paper discusses disruption rates, disruption causes and disruptivity statistics in the high-β_N National Spherical Torus Experiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557). While the overall disruption rate is rather high, configurations with high β_n, moderate q*, strong boundary shaping, sufficient rotation and broad pressure and current profiles are found to have the lowest disruptivity; active n = 1 control further reduces the disruptivity. The disruptivity increases rapidly for q* < 2.7, which is substantially above the ideal MHD current limit. Under quiescent conditions, q_(min) > 1.25 is generally acceptable for avoiding the onset of core rotating n = 1 kink/tearing modes; when EPM and ELM disturbances are present, the required q_(min) for avoiding those modes is raised to ~1.5. The current ramp and early flat-top phase of the discharges are prone to n = 1 core rotating modes locking to the wall, leading to a disruption. Small changes to the discharge fuelling during this phase can often mitigate the rotation damping associated with these modes and eliminate the disruption. The largest stored-energy disruptions are those that occur at high current when a plasma current ramp-down is initiated incorrectly.
机译:本文讨论了高β_N国家球形圆环实验(NSTX)(Ono等人2000 Nucl。Fusion 40557)中的破坏速率,破坏原因和破坏性统计数据。尽管总破坏率相当高,但发现具有高β_n,中等q *,强边界整形,足够的旋转以及宽压力和电流分布的配置具有最低的破坏力。有源n = 1控件进一步降低了干扰性。当q * <2.7时,扰动迅速增加,这大大高于理想的MHD电流极限。在静态条件下,q_(min)> 1.25通常是可以接受的,以避免出现核心旋转n = 1扭结/撕裂模式的现象。当存在EPM和ELM干扰时,避免这些模式所需的q_(min)增大到〜1.5。放电的电流斜坡和早期平顶阶段很容易使n = 1的磁芯旋转模式锁定在壁上,从而导致中断。在此阶段,对排放燃料的微小变化通常可以减轻与这些模式相关的旋转阻尼并消除干扰。最大的存储能量中断是在错误启动等离子电流斜坡下降时在高电流下发生的中断。

著录项

  • 来源
    《Nuclear fusion》 |2013年第4期|043020.1-043020.19|共19页
  • 作者单位

    Princeton Plasma Physics Laboratory, Princeton NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton NJ 08543, USA;

    Princeton Plasma Physics Laboratory, Princeton NJ 08543, USA;

    Department of Applied Physics, Columbia University, New York, NY 10027, USA;

    Lawrence Livermore National Laboratory, Livermore, CA 94551, USA;

    The Johns Hopkins University, Baltimore, MD 21218, USA;

    Nova Photonics, Princeton NJ 08540, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号