...
首页> 外文期刊>Nuclear fusion >Numerical study of beam propagation and plasma properties in the neutralizer and the E-RID of the ITER Neutral Beam Injector
【24h】

Numerical study of beam propagation and plasma properties in the neutralizer and the E-RID of the ITER Neutral Beam Injector

机译:ITER中性束注入器中和器和E-RID中束传播和等离子体特性的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

Non-ohmic heating will be used in the experimental nuclear fusion reactor ITER to reach thermonuclear temperatures. Two heating mechanism will be implemented, i.e. microwaves resonant with ion and electron cyclotron frequencies and energetic neutral beam injection, which contributes also to the current drive. Each one of the two neutral beam injector planned for ITER will deliver 16 MW of 1 MeV D~0 beam. In the injector, negative ions D~- coming from a 40 A negative ion source are electrostatically accelerated to 1 MeV, and stripped of their extra electron by collision with a target gas in a structure known as the neutralizer. Residual charged particles are deflected after the neutralizer in an electrostatic ion dump (E-RID). The ionization of the deuterium buffer gas filling the neutralizer induced by the D~- beam creates a rarefied plasma which is expected to efficiently screens the Coulomb repulsion of the beam. Moreover, this plasma can eventually escape from the neutralizer and move back in the accelerator, towards the accelerating grids and the negative ion source. The transport of the beam through the neutralizer and the RID and the related plasma properties were studied using a 3D electrostatic particle-in-cell code called OBI-3 (Orsay Beam Injector 3 dimensional). Particle-particle and particle-wall collisions are treated using the Monte Carlo collision approach. Simulations show that the secondary plasma effectively screens the beam space charge preventing beam transverse expansion. Plasma ions created in the neutralizer form an upstream current with a magnitude of ~0.5% of the negative ion current. Gas breakdown leading to arc formation in the RID was not observed. Finally, results for the propagation of non-ideal beams coming from simulations of the extraction and consecutive acceleration taken from Revel et al 2013 Nucl. Fusion 53 073027 are presented.
机译:非欧姆加热将用于实验性核聚变反应堆ITER中,以达到热核温度。将实现两种加热机制,即与离子和电子回旋加速器频率共振的微波和高能中性束注入,这也有助于电流驱动。计划用于ITER的两个中性束注入器中的每一个将提供16 MW的1 MeV D〜0束。在喷射器中,来自40 A负离子源的负离子D〜-被静电加速至1 MeV,并通过与目标气体发生碰撞而在称为中和器的结构中剥离掉多余的电子。中和剂之后,残留的带电粒子在静电离子收集器(E-RID)中偏转。由D〜-束引起的填充中和剂的氘缓冲气体的电离产生稀有等离子体,该等离子体有望有效地屏蔽束的库仑排斥。此外,该等离子体最终可以从中和器中逸出,并在加速器中向加速栅格和负离子源方向移动。使用称为OBI-3(奥赛束注入器3维)的3D单元内静电粒子代码研究了束流通过中和器和RID的传输以及相关的等离子体性能。使用蒙特卡洛碰撞方法处理粒子-粒子和粒子-壁碰撞。仿真表明,次级等离子体有效地屏蔽了束空间电荷,从而防止了束的横向扩展。在中和器中产生的等离子体离子形成上游电流,其大小为负离子电流的〜0.5%。没有观察到气体击穿导致在RID中形成电弧。最后,非理想光束的传播结果来自Revel等人2013 Nucl的提取和连续加速度的模拟。提出了Fusion 53 073027。

著录项

  • 来源
    《Nuclear fusion》 |2014年第4期|043020.1-043020.8|共8页
  • 作者单位

    Laboratoire d'Optique Appliquee, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau, France;

    Laboratoire de Physique des Gaz et des Plasmas (CNRS UMR 8578), Universite Paris Ⅺ, Batiment 210, 91405 Orsay cedex, France;

    Laboratoire de Physique des Gaz et des Plasmas (CNRS UMR 8578), Universite Paris Ⅺ, Batiment 210, 91405 Orsay cedex, France;

    Laboratoire de Physique des Gaz et des Plasmas (CNRS UMR 8578), Universite Paris Ⅺ, Batiment 210, 91405 Orsay cedex, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    neutral beam injection; ITER heating; neutralizer modelling;

    机译:中性束注入;ITER加热;中和剂建模;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号