...
首页> 外文期刊>Nuclear fusion >Understanding of impurity poloidal distribution in the edge pedestal by modelling
【24h】

Understanding of impurity poloidal distribution in the edge pedestal by modelling

机译:通过建模了解边缘基座中的杂质极点分布

获取原文
获取原文并翻译 | 示例
           

摘要

Simulation of an H-mode ASDEX Upgrade shot with boron impurity was done with the B2SOLPS5.2 transport code. Simulation results were compared with the unique experimental data available for the chosen shot: radial density, electron and ion temperature profiles in the equatorial midplanes, radial electric field profile, radial profiles of the parallel velocity of impurities at the low-field side (LFS) and high-field side (HFS), radial density profiles of impurity ions at LHS and HFS. Simulation results reproduce all available experimental data simultaneously. In particular strong poloidal HFS-LFS asymmetry of B~(5+) ions was predicted in accordance with the experiment. The simulated HFS B~(5+) density inside the edge transport barrier is twice larger than that at LFS. This is consistent with the experimental observations where even larger impurity density asymmetry was observed. A similar effect was predicted in the simulation done for the MAST H-mode. Here the HFS density of He~(2+) is predicted to be 4 times larger than that at LHS. Such a large predicted asymmetry is connected with a larger ratio of HFS and LFS magnetic fields which is typical for spherical tokamaks. The HFS/LFS asymmetry was not measured in the experiment, however modelling qualitatively reproduces the observed change of sign of He~+parallel velocity to the counter-current direction at LFS. The understanding of the asymmetry is based on neoclassical effects in plasma with strong gradients. It is demonstrated that simulation results obtained with account of sources of ionization, realistic geometry and turbulent transport are consistent with the simplified analytical approach. Difference from the standard neoclassical theory is emphasized.
机译:使用B2SOLPS5.2传输代码对带有硼杂质的H模式ASDEX升级射击进行了仿真。将模拟结果与所选镜头的独特实验数据进行了比较:赤道中平面的径向密度,电子和离子温度分布,径向电场分布,低场侧(LFS)杂质平行速度的径向分布和高场侧(HFS),LHS和HFS处杂质离子的径向密度分布。仿真结果会同时重现所有可用的实验数据。根据实验预测,尤其是B〜(5+)离子的强倍体HFS-LFS不对称性。边缘传输势垒内部的模拟HFS B〜(5+)密度是LFS处的两倍。这与观察到更大的杂质密度不对称性的实验观察结果一致。在对MAST H模式进行的模拟中预测了类似的效果。在这里,He〜(2+)的HFS密度预计是LHS的4倍。如此大的预测不对称性与较大的HFS和LFS磁场比率有关,这对于球形托卡马克来说很典型。在实验中未测量HFS / LFS的不对称性,但是建模定性地再现了在LFS处观察到的He〜+平行速度符号向逆流方向的变化。对不对称性的理解是基于具有强梯度的等离子体中的新古典效应。结果表明,考虑到电离源,真实的几何形状和湍流传输而获得的模拟结果与简化的分析方法是一致的。强调与标准新古典理论的区别。

著录项

  • 来源
    《Nuclear fusion》 |2015年第7期|073017.1-073017.8|共8页
  • 作者单位

    Peter the Great St Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St Petersburg, Russia;

    Peter the Great St Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St Petersburg, Russia;

    Peter the Great St Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St Petersburg, Russia;

    Peter the Great St Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St Petersburg, Russia;

    Peter the Great St Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St Petersburg, Russia;

    Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching, Germany;

    Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching, Germany;

    Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching, Germany;

    Max-Planck Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching, Germany;

    ITER Organization 13067 St. Paul-lez-Durance France, Kurchatov Institute, Kurchatov sq. 1, 123182 Moscow, Russia, NRNU MEPhI, Kashirskoye sh. 31, 115409 Moscow, Russia;

    EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    tokamak; impurities; asymmetry;

    机译:托卡马克杂质不对称;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号