...
首页> 外文期刊>Nuclear fusion >First demonstration of rapid shutdown using neon shattered pellet injection for thermal quench mitigation on DIII-D
【24h】

First demonstration of rapid shutdown using neon shattered pellet injection for thermal quench mitigation on DIII-D

机译:在DIII-D上首次展示了使用霓虹破碎的小球注入技术快速​​缓解热淬火的快速停机

获取原文
获取原文并翻译 | 示例
           

摘要

Shattered pellet injection (SPI) is one of the prime candidates for the ITER disruption mitigation system because of its deeper penetration and larger particle flux than massive gas injection (MGI) (Taylor et al 1999 Phys. Plasmas 6 1872) using deuterium (Commaux et al 2010 Nucl. Fusion 50 112001, Combs et al 2010 IEEE Trans. Plasma Sci. 38 400, Baylor et al 2009 Nucl. Fusion 49 085013). The ITER disruption mitigation system will likely use mostly high Z species such as neon because of more effective thermal mitigation and pumping constraints on the maximum amount of deuterium or helium that could be injected. An upgrade of the SPI on DIII-D enables ITER relevant injection characteristics in terms of quantities and gas species. This upgraded SPI system was used on DIII-D for the first time in 2014 for a direct comparison with MGI using identical quantities of neon. This comparison enabled the measurements of density perturbations during the thermal quench (TQ) and radiated power and heat loads to the divertor. It showed that SPI using similar quantities of neon provided a faster and stronger density perturbation and neon assimilation, which resulted in a lower conducted energy to the divertor and a faster TQ onset. Radiated power data analysis shows that this was probably due to the much deeper penetration of the neon in the plasma inducing a higher core radiation than in the MGI case. This experiment shows also that the MHD activity during an SPI shutdown (especially during the TQ) is quite different compared to MGI. This favorable TQ energy dissipation was obtained while keeping the current quench (CQ) duration within acceptable limits when scaled to ITER.
机译:与使用氘气的大规模气体注入(MGI)(Taylor等1999 Phys.Plasmas 6 1872)相比,破碎的颗粒注入(SPI)是ITER干扰缓解系统的主要候选者之一,因为它具有更深的穿透力和更大的颗粒通量(Commaux等)等人,2010 Nucl.Fusion 50 112001,Combs等人2010 IEEE Trans.Plasma Sci.38400,Baylor等人2009 Nucl.Fusion 49 085013)。由于更有效的热缓解措施以及对可注入的最大氘或氦气的泵送限制,ITER干扰缓解措施系统可能会使用大部分高Z物质,例如氖。 DIII-D上SPI的升级使ITER在数量和气体种类方面具有相关的喷射特性。这种升级的SPI系统于2014年首次在DIII-D上使用,可与使用相同量氖气的MGI直接比较。这种比较可以测量热淬火(TQ)期间的密度扰动以及分流器的辐射功率和热负荷。结果表明,使用相似量的氖气的SPI提供了更快,更强的密度扰动和氖气同化作用,从而导致向偏滤器的传导能量更低,TQ发作更快。辐射功率数据分析表明,这可能是由于氖气在等离子体中的渗透更深,从而导致了比MGI情况更高的核心辐射。该实验还表明,与MGI相比,SPI关闭期间(特别是在TQ期间)的MHD活动非常不同。获得这种有利的TQ能量消耗,同时将电流猝灭(CQ)持续时间缩放到ITER时,保持在可接受的范围内。

著录项

  • 来源
    《Nuclear fusion》 |2016年第4期|046007.1-046007.7|共7页
  • 作者单位

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    University of California San Diego, San Diego, CA 92093, USA;

    General Atomics, San Diego, CA, USA;

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA;

    University of California San Diego, San Diego, CA 92093, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    tokamak; disruption; DIII-D; mitigation;

    机译:托卡马克破坏DIII-D;减轻;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号