...
首页> 外文期刊>Nuclear fusion >Structural response of transient heat loading on a molybdenum surface exposed to low-energy helium ion irradiation
【24h】

Structural response of transient heat loading on a molybdenum surface exposed to low-energy helium ion irradiation

机译:低能氦离子辐照的钼表面瞬态热负荷的结构响应

获取原文
获取原文并翻译 | 示例
           

摘要

The advancement of fusion reactor engineering is currently inhibited by the lack of knowledge surrounding the stability of plasma facing components (PFCs) in a tokamak environment. During normal operation, events of high heat loading occur periodically where large amounts of energy are imparted onto the PFC surface. Concurrently, irradiation by low-energy helium ions present in the fusion plasma can result in the synthesis of a fibre form nanostructure on the PFC surface, called 'fuzz'. In order to understand how this heterogeneous structure evolves and deforms in response to transient heat loading, a pulsed Nd:YAG millisecond laser is used to simulate these events on a fuzz form molybdenum (Mo) surface. Performance was analysed by three metrics: nanostructure evolution, particle emission, and improvement in optical properties. Experiments performed at the upper end of the expected range for type-Ⅰ edge-localized modes (ELMs) found that the helium-induced nanostructure completely disappears after 200 pulses of the laser at 1.5 MJ m~(-2). In situ mass loss measurements found that the amount of particles leaving the surface increases as energy density increases and the rate of emission increases with pulse count. Finally, optical properties assisted in providing a qualitative indication of fuzz density on the Mo surface; after 400 pulses at 1.5 MJ m~(-2), the optical reflectivity of the damaged surface is ~90% of that of a mirror polished Mo sample. These findings provide different results than previous studies done with tungsten (W), and further help illustrate the complicated nature of how transient events of high heat loading in a tokamak environment might impact the performance and lifetime of PFCs in ITER and future DEMO devices (Ueda et al 2014 Fusion Eng. Des. 89 901-6).
机译:目前,由于缺乏在托卡马克环境中面对等离子体的部件(PFC)的稳定性的知识,聚变反应堆工程技术的发展受到了阻碍。在正常操作期间,高热量负荷的事件会定期发生,其中大量能量会传递到PFC表面。同时,聚变等离子体中存在的低能氦离子照射会导致在PFC表面合成纤维形式的纳米结构,称为“绒毛”。为了了解这种异质结构如何响应瞬态热负荷而演化和变形,使用了脉冲Nd:YAG毫秒激光来模拟绒毛形式的钼(Mo)表面上的这些事件。通过三个指标来分析性能:纳米结构演变,粒子发射和光学性能的改善。在预期的Ⅰ型边缘定位模式(ELMs)范围的上限进行的实验发现,氦气诱导的纳米结构在1.5 MJ m〜(-2)的激光脉冲200次后完全消失。原位质量损失测量发现,随着能量密度的增加,离开表面的颗粒数量会增加,并且发射速率会随着脉冲计数的增加而增加。最后,光学特性有助于对Mo表面的绒毛密度进行定性指示。在1.5 MJ m〜(-2)下400个脉冲后,损伤表面的光反射率约为镜面抛光Mo样品的90%。这些发现提供的结果与以前对钨(W)进行的研究不同,并且进一步帮助说明了托卡马克环境中高热负荷的瞬态事件如何影响ITER和未来DEMO设备中的PFC的性能和寿命的复杂性质(上田等人,2014 Fusion Eng。Des。89 901-6)。

著录项

  • 来源
    《Nuclear fusion》 |2016年第3期|036005.1-036005.12|共12页
  • 作者单位

    Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering Purdue University, West Lafayette, IN-47907, USA;

    Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering Purdue University, West Lafayette, IN-47907, USA;

    Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering Purdue University, West Lafayette, IN-47907, USA;

    Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering Purdue University, West Lafayette, IN-47907, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    plasma facing materials; molybdenum; fuzz formation; ion irradiation; atomic force microscopy; laser irradiation; transient heat loading;

    机译:等离子材料钼;绒毛形成;离子辐射原子力显微镜激光照射瞬态热负荷;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号