...
首页> 外文期刊>Nuclear fusion >Investigation of mode activity in NBI-heated experiments of Wendelstein 7-X
【24h】

Investigation of mode activity in NBI-heated experiments of Wendelstein 7-X

机译:WENDELSEIN 7-X的NBI加热实验中模式活性的研究

获取原文
获取原文并翻译 | 示例
           

摘要

The 2018 operation phase (OP 1.2b) of the stellarator Wendelstein 7-X (W7-X) included, for the first time, neutral beam injection (NBI) to heat the plasma. Since the injection geometry at W7-X is not parallel, this generates both passing and trapped fast particles. During longer phases of NBI injection, with the primary purpose to study the heating efficiency of this system, Alfven eigenmodes (AEs) were observed by a number of diagnostics, including the phase contrast imaging (PCI) system, the magnetic pick-up coils (Mirnov coils), and the soft x-ray multi-camera tomography system (XMCTS). Alfven eigenmodes are of great interest for future fusion reactors as it has been shown that the resonant interaction of fast ions with self-excited AEs can lead to enhanced transport of fast ions and potentially to energy losses. This is especially true for so-called gap-modes, Alfven eigenmodes with frequencies in gaps of the continuous spectrum, since they lack continuum damping. These modes are commonly known to be excited by fast ions, but other destabilizing mechanisms, e.g. the electron-pressure gradient are also possible. In this article we present a first analysis of the experimentally observed frequencies from the theoretical side. The calculation of shear Alfven wave continua for selected cases and the assignment of observed frequencies to the gaps of the continuous spectra are presented. Using the ideal-MHD code CKA (Konies A. 2007 10th IAEA TM on Energetic Particles in Magnetic Confinement System), we find gap modes that match the experimental measurements in terms of the observed frequencies. We emphasize the crucial roles played by the coupling of sound and Alfven waves as well as of the Doppler shift arising as a consequence of the radial electric field in W7-X. We employ the perturbative gyrokinetic code CKA-EUTERPE (Feh'er 2013 Simulation of the interaction between Alfv'en waves and fast particles), using a slowing-down distribution function for the fast ions as calculated by the Monte-Carlo particle following code ASCOT (Hirvijoki et al 2014 Comput. Phys. Commun. 185 1310-21) to assess the fast-ion drive. We find that the fast-ion drive is insufficient to overcome the background-plasma damping. The fact that unstable modes were observed experimentally may point to problems with the modelling or indicate the existence of other destabilizing mechanisms, e.g. associated with the electron-pressure gradient (Windisch et al 2017 Plasma Phys. Control. Fusion 59 105002) that sensitively depend on the profiles of the background plasma.
机译:包括螺旋液Wendelstein 7-X(W7-X)的2018操作阶段(OP 1.2B),首次是中性光束注射(NBI)加热等离子体。由于W7-x处的注射几何形状不平行,因此这产生了通过和捕获的快速粒子。在NBI注射的较长阶段期间,通过研究该系统的加热效率的主要目的,通过许多诊断观察Alfven特征模(AES),包括相位对比度成像(PCI)系统,磁性拾取线圈( MiRNOV线圈)和软X射线多摄像头断层扫描系统(XMCTS)。 Alfven EigenModes对未来的融合反应堆具有很大的兴趣,因为已经表明,快速离子与自激抗体的共振相互作用可以导致快速离子的运输和可能对能量损失产生。对于所谓的间隙模式,尤其是具有连续频谱间隙中的频率的Alfven特征模块尤其如此,因为它们缺乏连续性阻尼。这些模式通常已知通过快速离子激发,而是其他稳定的机制,例如也是稳定的机制。电子压梯度也是可能的。在本文中,我们首次分析了从理论方面的实验观察频率。介绍了所选病例的剪切Alfven Wave Winalua的计算和观察到的频率对连续光谱间隙的分配。使用理想的MHD码CKA(Konies A.2007第10 IAEA TM在磁监禁系统中的能量粒子上),找到符合观察频率的实验测量的差距模式。我们强调声音和Alfven波的耦合以及由于W7-X中的径向电场而产生的多普勒变速器所发挥的关键作用。我们采用扰动陀螺码CKA-Euterpe(FEH'er 2013模拟了Alfv'en波和快速粒子之间的相互作用),使用码址芯片之后的蒙特卡洛粒子计算的快速离子的减速分布函数(Hirvijoki等,2014年计算。Physm.185 1310-21)评估快速离子驱动器。我们发现快速离子驱动不足以克服背景等离子体阻尼。实验观察到不稳定模式的事实可能指向建模或表明存在其他不稳定机制的问题,例如,与电子压梯度相关联(Windisch等,2017等离子体物理。控制。融合59 105002),其敏感地依赖于背景等离子体的轮廓。

著录项

  • 来源
    《Nuclear fusion》 |2020年第11期|112004.1-112004.17|共17页
  • 作者单位

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany Department of Applied Physics Aalto University FI-00076 Aalto Finland;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Kharkov Institute of Physics and Technology 1 Akademicheskaya St. Kharkov 61108 Ukraine;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    MIT Plasma Science and Fusion Center 167 Albany St Cambridge MA 02139 United States of America;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Princeton Plasma Physics Laboratory 100 Stellarator Rd Princeton NJ 08540 United States of America;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

    Max Planck Institute for Plasma Physics Wendelsteinstr. 1 17491 Greifswald Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号