...
首页> 外文期刊>Nuclear fusion >Highly porous tungsten for plasma-facing applications in nuclear fusion power plants: a computational analysis of hollow nanoparticles
【24h】

Highly porous tungsten for plasma-facing applications in nuclear fusion power plants: a computational analysis of hollow nanoparticles

机译:核聚变电厂面向等离子应用的高度多孔钨:空心纳米粒子的计算分析

获取原文
获取原文并翻译 | 示例
           

摘要

Plasma-facing materials (PFMs) for nuclear fusion, either in inertial confinement fusion (ICF) or in magnetic confinement fusion (MCF) approaches, must withstand extremely hostile irradiation conditions. Mitigation strategies are plausible in some cases, but usually the best, or even the only, solution for feasible plant designs is to rely on PFMs able to tolerate these irradiation conditions. Unfortunately, many studies report a lack of appropriate materials that have a good thermomechanical response and are not prone to deterioration by means of irradiation damage. The most deleterious effects are vacancy clustering and the retention of light species, as is the case for tungsten. In an attempt to find new radiation-resistant materials, we studied tungsten hollow nanoparticles under different irradiation scenarios that mimic ICF and MCF conditions. By means of classical molecular dynamics, we determined that these particles can resist astonishingly high temperatures (up to ~3000 K) and huge internal pressures (>5 GPa at 3000 K) before rupture. In addition, in the case of gentle pressure increase (ICF scenarios), a self-healing mechanism leads to the formation of an opening through which gas atoms are able to escape. The opening disappears as the pressure drops, restoring the original particle. Regarding radiation damage, object kinetic Monte Carlo simulations show an additional self-healing mechanism. At the temperatures of interest, defects (including clusters) easily reach the nanoparticle surface and disappear, which makes the hollow nanoparticles promising for ICF designs. The situation is less promising for MCF because the huge ion densities expected at the surface of PFMs lead to inevitable particle rupture.
机译:核融合的面向等离子体材料(PFMS),无论是惯性限制融合(ICF)还是磁监管融合(MCF)方法,必须承受极其敌对的照射条件。在某些情况下,缓解策略是合理的,但通常是最好的,甚至是唯一的可行植物设计的解决方案是依赖于能够容忍这些照射条件的PFM。不幸的是,许多研究报告缺乏具有良好热机械反应的合适材料,并且不易通过照射损伤劣化。最有害的效果是空位聚类和光物种的保留,钨的情况如此。试图找到新的抗辐射材料,我们在模拟ICF和MCF条件下的不同照射场景下研究了钨空心纳米颗粒。通过经典分子动力学,我们确定这些颗粒可以在破裂之前抵抗惊人的高温(高达3000 k)和巨大的内部压力(> 5GPa)。另外,在温和的压力增加(ICF场景)的情况下,自愈合机构导致形成气体原子能够逸出的开口。开口随着压力下降而消失,恢复原始粒子。关于辐射损伤,对象动力学蒙特卡罗模拟显示额外的自我愈合机制。在感兴趣的温度下,缺陷(包括簇)容易到达纳米颗粒表面并消失,这使得中空纳米粒子对ICF设计有望。由于PFMS表面预期的巨大离子密度导致不可避免的颗粒破裂,因此情况对MCF的巨大密度较小。

著录项

  • 来源
    《Nuclear fusion》 |2020年第9期|096017.1-096017.14|共14页
  • 作者单位

    Instituto de Fusion Nuclear 'Guillermo Velarde' Universidad Politecnica de Madrid Spain;

    Departamento de Fisica Facultad de Ciencias Universidad de Chile Casilla 653 Santiago 7800024 Chile Centra para el Desarrollo de la Nanociencia y la Nanotecnologia (CEDENNA) Universidad de Santiago de Chile USACH Av. Ecuador 3493 Santiago Chile;

    Departamento de Fisica Facultad de Ciencias Universidad de Chile Casilla 653 Santiago 7800024 Chile Centra para el Desarrollo de la Nanociencia y la Nanotecnologia (CEDENNA) Universidad de Santiago de Chile USACH Av. Ecuador 3493 Santiago Chile;

    Universidad Catolica de Murcia - Campus de los Jeronimos Murcia Spain;

    Instituto de Fusion Nuclear 'Guillermo Velarde' Universidad Politecnica de Madrid Spain Departamento de Ingenieria Energetica ETSI Industrials Universidad Politecnica de Madrid Spain;

    Instituto de Fusion Nuclear 'Guillermo Velarde' Universidad Politecnica de Madrid Spain Departamento de Ingenieria Energetica ETSI Industrials Universidad Politecnica de Madrid Spain;

    Instituto de Fusion Nuclear 'Guillermo Velarde' Universidad Politecnica de Madrid Spain Departamento de Ingenieria Energetica ETSI Industrials Universidad Politecnica de Madrid Spain;

    Centra para el Desarrollo de la Nanociencia y la Nanotecnologia (CEDENNA) Universidad de Santiago de Chile USACH Av. Ecuador 3493 Santiago Chile DAiTA Lab Facultad de Ciencias Universidad Mayor Chile;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    first wall; hollow nanoparticles; helium-irradiated tungsten; nanomaterials; nuclear fusion; molecular dynamics; object kinetic Monte Carlo simulations;

    机译:第一墙;中空纳米粒子;氦辐照钨;纳米材料;核聚变;分子动力学;对象动力学蒙特卡罗模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号