...
首页> 外文期刊>Nuclear fusion >Simulations of tokamak boundary plasma turbulence transport in setting the divertor heat flux width
【24h】

Simulations of tokamak boundary plasma turbulence transport in setting the divertor heat flux width

机译:托卡马克边界等离子体湍流输运设定偏滤器热通量宽度的模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The BOUT + + code has been used to simulate edge plasma electromagnetic (EM) turbulence and transport, and to study the role of EM turbulence in setting the scrape-off layer (SOL) heat flux width lambda(q). More than a dozen tokamak discharges from C-Mod, DIII-D, EAST, ITER and CFETR have been simulated with encouraging success. The parallel electron heat fluxes onto the target from the BOUT + + simulations of C-Mod, DIII-D, and EAST follow the experimental heat flux width scaling of the inverse dependence on the poloidal magnetic field. Further turbulence statistics analysis shows that the blobs are generated near the pedestal pressure peak gradient region inside the separatrix and contribute to the transport of the particle and heat in the SOL region. Transport simulations indicate two distinct regimes: drift dominant regime and turbulence dominant regime. Goldston's heuristic drift-based (HD) model yields a consistent divertor heat flux width in the drift dominant regime. For C-Mod enhanced D-alpha H-mode discharges, drifts and turbulence are competing in setting the divertor heat flux width, possibly due to its compact machine size and good pedestal confinement.The simulations for ITER and CFETR indicate that divertor heat flux width lambda(q) of the future machines may no longer follows the 1/B-pol,B-OMP HD-based empirical (Eich) scalings and the HD model gives a pessimistic limit of divertor heat flux width. The simulation results show a transition from a drift dominant regime to a turbulence dominant regime from current machines to future machines such as ITER and CFETR for two reasons. (1) The magnetic drift-based radial transport decreases due to large CFETR and ITER machine sizes. (2) The SOL turbulence thermal diffusivity increases due to larger turbulent fluxes ejected from the pedestal into the SOL when operating in a different pedestal structure, from an ELM-free H-mode pedestal regime to a small and grassy ELM regime.
机译:BOUT + +代码已用于模拟边缘等离子体电磁(EM)湍流和传输,并研究EM湍流在设置刮除层(SOL)热通量宽度λ(q)中的作用。模拟了C-Mod,DIII-D,EAST,ITER和CFETR的十多个托卡马克排放,取得了令人鼓舞的成功。从C-Mod,DIII-D和EAST的BOUT + +模拟到目标的平行电子热通量遵循实验热通量宽度缩放,其反比例依赖于极向磁场。进一步的湍流统计分析表明,斑点在分离线内部的基座压力峰值梯度区域附近生成,并有助于在SOL区域中粒子和热量的传输。输运模拟表明两种不同的状态:漂移主导状态和湍流主导状态。 Goldston的启发式基于漂移(HD)的模型在漂移主导状态下产生一致的偏滤器热通量宽度。对于C-Mod增强的D-alpha H模式放电,漂移和湍流在设定偏滤器热通量宽度方面存在竞争,这可能是由于其紧凑的机器尺寸和良好的基座限制.ITER和CFETR的模拟表明偏滤器热通量宽度未来机器的lambda(q)可能不再遵循1 / B-pol,B-OMP基于HD的经验(Eich)标度,并且HD模型给出了偏滤器热通量宽度的悲观极限。仿真结果表明,从漂移主导状态到湍流主导状态从当前机器到未来机器(例如ITER和CFETR)的过渡有两个原因。 (1)由于大的CFETR和ITER机器尺寸,基于磁漂移的径向传输减少。 (2)SOL湍流热扩散率的增加是由于在不同的基座结构(从无ELM的H型基座结构到小而草的ELM结构)下工作时,从基座喷射到SOL中的湍流通量更大。

著录项

  • 来源
    《Nuclear fusion》 |2019年第12期|126039.1-126039.11|共11页
  • 作者单位

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA|Dalian Univ Technol Dalian Peoples R China;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA|Peking Univ Sch Phys Beijing Peoples R China|Gen Atom San Diego CA 92186 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA|Univ Sci & Technol China Hefei Anhui Peoples R China;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA|Chinese Acad Sci Inst Plasma Phys Hefei Anhui Peoples R China;

    Univ Sci & Technol China Hefei Anhui Peoples R China|Gen Atom San Diego CA 92186 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    turbulence; drift; divertor heat flux width; C-Mod; DIII-D; EAST; ITER; CFETR; BOUT plus;

    机译:湍流漂移;偏滤器热通量宽度;C-Mod;DIII-D;东;ITER;CFETR;BOUT加;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号