...
首页> 外文期刊>Nuclear fusion >A study of planar toroidal-poloidal beveling of monoblocks on the ITER divertor outer vertical target
【24h】

A study of planar toroidal-poloidal beveling of monoblocks on the ITER divertor outer vertical target

机译:ITER偏滤器外垂直靶上单块平面环面-圆弧斜面的研究

获取原文
获取原文并翻译 | 示例
           

摘要

The design of the monoblocks constituting the ITER divertor vertical targets comprises a simple toroidal (i.e. toroidally-facing) bevel of 0.5 mm in order to magnetically shadow poloidal (i.e. poloidally-running) leading edges, arising from radial misalignments between toroidally neighbouring blocks, from parallel heat loads between and during edge-localised modes (ELMs). Previous studies suggest that excessive heating of long toroidal edges could also occur, possibly leading to melting during ELMs. Furthermore, despite the toroidal bevel, tiny regions of the poloidal leading edges known as 'optical hot spots', accessible along magnetic field lines through toroidal gaps, remain exposed to parallel heat flux from ELMs. The intense heat flux onto those optical hot spots could be large enough to trigger tungsten boiling. A possible solution at the outer vertical target is to implement a planar toroidal-poloidal bevel that would hide all poloidal and toroidal edges and eliminate the optical hot spot. It will be demonstrated that a reasonable 'shallow' toroidal-poloidal bevel solution solves all these problems with minimal trade-offs, under the condition that monoblocks on neighbouring plasma-facing units be well aligned poloidally in order to prevent the appearance of exposed leading edges, meaning, in the worst case, a stepwise downward shift of each toroidally upstream plasma-facing unit by -2 +/- 2 mm with respect to their downstream neighbours. A more deeply beveled solution has also been studied that is immune to poloidal misalignments, but which comprises important trade-offs in terms of higher heat load to the main wetted surface, and excessive ELM heat loads onto the magnetically shadowed side of the toroidal gaps. Unfortunately, due the inclination of magnetic flux surfaces, the planar toroidal-poloidal beveling solution does not work at the inner vertical target, meaning that its application at the outer target alone leaves the inner toroidal gaps unprotected. This, together with the technologically challenging requirement for a high degree of poloidal alignment of toroidally neighbouring plasma-facing units, has led to a decision not to apply the poloidal-toroidal bevel solution on the ITER vertical targets.
机译:构成ITER偏滤器垂直目标的整体结构的设计包括一个0.5 mm的简单环形(即面向环形)斜面,以磁遮蔽由环形相邻块之间的径向未对准引起的多面体(即,沿柱面运行)的前缘,边缘定位模式(ELM)之间和期间的平行热负荷。先前的研究表明,长环形边缘的过度加热也可能发生,可能导致ELM熔化。此外,尽管有环形斜面,但沿着磁场线通过环形间隙可进入的极小前沿的极小区域(称为“光学热点”)仍然暴露于来自ELM的平行热流中。这些光学热点上的强烈热通量可能足够大,足以触发钨沸腾。在外部垂直目标处可能的解决方案是实现一个平面的圆弧-圆弧斜角,该斜角将隐藏所有的圆弧和圆弧边缘并消除光学热点。将证明合理的“浅”环形-圆弧斜角解决方案可以在不折衷的情况下解决所有这些问题,其条件是相邻的等离子面对单元上的单体以极好的极性排列以防止暴露的前缘出现这意味着在最坏的情况下,每个环形上游等离子面对单元相对于其下游邻居逐步向下移动-2 +/- 2 mm。还研究了一种更斜面的解决方案,该解决方案不受极向错位的影响,但包括在主要润湿表面上的较高热负荷和环形间隙的磁性阴影侧上过多的ELM热负荷方面的重要权衡。不幸的是,由于磁通量表面的倾斜,环形的圆弧-圆弧形斜面解决方案无法在内部垂直目标上工作,这意味着仅将其应用在外部目标上,就不会保护内部的环形间隙。这与对环形相邻等离子体面对单元进行高度极向对准的技术挑战性要求一起,导致了一个决定,即不在ITER垂直目标上应用极向环形斜面解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号