首页> 外文期刊>Nuclear Engineering and Design >Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor
【24h】

Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor

机译:钠冷快堆超临界二氧化碳布雷顿循环的替代布局研究

获取原文
获取原文并翻译 | 示例
           

摘要

Analyses of supercritical carbon dioxide (S-CO_2) Brayton cycle performance have largely settled on the recompression supercritical cycle (or Feher cycle) incorporating a flow split between the main compressor downstream of heat rejection, a recompressing compressor providing direct compression without heat rejection, and high and low temperature recuperators to raise the effectiveness of recuperation and the cycle efficiency. Alternative cycle layouts have been previously examined by Angelino (Politecnico, Milan), by MIT (Dostal, Hejzlar, and Driscoll), and possibly others but not for sodium-cooled fast reactors (SFRs) operating at relatively low core outlet temperature. Thus, the present authors could not be sure that the recompression cycle is an optimal arrangement for application to the SFR. To ensure that an advantageous alternative layout has not been overlooked, several alternative cycle layouts have been investigated for a S-CO_2 Brayton cycle coupled to the Advanced Burner Test Reactor (ABTR) SFR preconceptual design having a 510℃ core outlet temperature and a 470℃ turbine inlet temperature to determine if they provide any benefit in cycle performance (e.g., enhanced cycle efficiency). No such benefits were identified, consistent with the previous examinations, such that attention was devoted to optimizing the recompression supercritical cycle. The effects of optimizing the cycle minimum temperature and pressure are investigated including minimum temperatures and/or pressures below the critical values. It is found that improvements in the cycle efficiency of 1 % or greater relative to previous analyses which arbitrarily fixed the minimum temperature and pressure can be realized through an optimal choice of the combination of the minimum cycle temperature and pressure (e.g., for a fixed minimum temperature there is an optimal minimum pressure). However, this leads to a requirement for a larger cooler for heat rejection which may impact the tradeoff between efficiency and capital cost. In addition, for minimum temperatures below the critical temperature, a lower heat sink temperature is required the availability of which is dependent upon the climate at the specific plant site.
机译:对超临界二氧化碳(S-CO_2)布雷顿循环性能的分析主要取决于再压缩超临界循环(或Feher循环),该合并了排热下游的主压缩机,提供直接压缩而无排热的压缩机之间的分流。高温和低温换热器,以提高换热效率和循环效率。先前,安吉利诺(安吉利诺(Politecnico,米兰)),麻省理工学院(Dostal,Hejzlar和Driscoll)以及其他可能的情况已经对替代循环布局进行了研究,但在相对较低的堆芯出口温度下运行的钠冷快堆(SFR)则未进行过审查。因此,本发明人不能确定再压缩循环是用于SFR的最佳方案。为了确保不忽略有利的替代布局,已针对S-CO_2布雷顿循环与高级燃烧器测试反应器(ABTR)SFR的概念设计进行了几种替代循环布局的研究,堆芯出口温度为510℃,出口温度为470℃涡轮入口温度,以确定它们是否对循环性能有所帮助(例如,增强循环效率)。与以前的检查结果一致,没有发现这样的好处,因此注意力集中在优化再压缩超临界循环上。研究了优化循环最低温度和压力的效果,包括低于临界值的最低温度和/或压力。已经发现,相对于先前任意确定最小温度和压力的分析,可以通过对最小周期温度和压力的组合进行最佳选择(例如,对于固定的最小温度),将循环效率提高1%或更高。温度下有一个最佳的最小压力)。但是,这导致需要用于散热的更大的冷却器,这可能会影响效率和资本成本之间的权衡。另外,对于低于临界温度的最低温度,需要较低的散热器温度,其可用性取决于特定工厂现场的气候。

著录项

  • 来源
    《Nuclear Engineering and Design》 |2009年第7期|1362-1371|共10页
  • 作者单位

    Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, United States;

    Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号