...
首页> 外文期刊>Military operations research >Effect of geometrical and temperature-dependence parameters on forced convection of a nanofluid in a micro-channel heat sink
【24h】

Effect of geometrical and temperature-dependence parameters on forced convection of a nanofluid in a micro-channel heat sink

机译:几何和温度相关性参数对微通道散热器中纳米流体强迫对流的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose - The purpose of this study is the numerical prediction of the thermal and hydraulic characteristics (Nusselt number and shear stress) of a forced convection laminar flow through a rectangular micro-channel heat sink, using constant and temperature-dependent thermo-physical properties. The effects of the solids volume fraction and the size of the micro-channel on heat transfer enhancement have also been investigated. Design/methodology/approach - The authors use the flow of a water-Al2O3 nanofluid and a single-phase approach. The equations are solved using the commercial code Fluent Version 6.3. This code uses the finite volume approach to solve the equations subject to the boundary conditions, which govern three-dimensional conjugate convection-conduction heat transfer model. The physical domain was meshed using the code GAMBIT. The mesh used is non-uniform and was obtained by sweeping in the Z direction an X-Y surface meshed with QUAD/pave type cells. Findings - The results clearly show that the inclusion of nanoparticles produces a considerable increase in the heat transfer. Also, the temperature-dependent models present higher values of local and average Nusselt number than in the case of constant thermo-physical properties, and an increase in the channel dimensions leads to an important increase in heat transfer. Consequently, we ensure a better cooling of the base of the micro-channel heat sink. Research limitations/implications - Because of the settling of nanoparticles, the research results may not be generalized to high values of solids volume fraction. Therefore, researchers are encouraged to find other techniques of cooling when the heat loads exceed values that cannot be dissipated using nanonofluids. Practical implications - The paper includes implications for the miniaturization of electronic devices such as in microprocessors or those used in robotics and automotive industries, where continually increasing power densities are requiring more innovative techniques of heat dissipation from a small area and small coolant requirements. Originality/value - This paper shows the implementation of variable property nanofluid models in CFD commercial codes.
机译:目的-这项研究的目的是利用恒定和温度相关的热物理特性,对通过矩形微通道散热器的强制对流层流的热和水力特性(努塞尔数和切应力)进行数值预测。还研究了固体体积分数和微通道尺寸对传热增强的影响。设计/方法/方法-作者使用水-Al2O3纳米流体的流动和单相方法。使用商业代码Fluent版本6.3求解方程。该代码使用有限体积方法求解受边界条件约束的方程,该方程控制三维共轭对流传导导热模型。使用代码GAMBIT对物理域进行了网格划分。所使用的网格是不均匀的,是通过在Z方向上扫描与QUAD /铺路型单元啮合的X-Y表面获得的。发现-结果清楚地表明,包含纳米颗粒会大大提高热传递。而且,与温度相关的模型比在恒定的热物理性质的情况下具有更高的局部和平均努塞尔数值,并且通道尺寸的增加导致传热的显着增加。因此,我们确保更好地冷却微通道散热器的底座。研究的局限性/意义-由于纳米颗粒的沉降,研究结果可能无法推广到固体体积分数较高的值。因此,鼓励研究人员在热负荷超过无法使用纳米流体消散的值时找到其他冷却技术。实际意义-本文包括对微型计算机或机器人技术和汽车行业中使用的电子设备小型化的影响,在这些领域中,不断提高的功率密度要求从小面积和小的冷却液需求出发采用更具创新性的散热技术。原创性/价值-本文展示了CFD商业代码中可变属性纳米流体模型的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号