...
首页> 外文期刊>Military operations research >The heat recovery technologies of mine waste heat sources
【24h】

The heat recovery technologies of mine waste heat sources

机译:矿山余热源热回收技术

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose - Currently, China is the largest coal producer and consumer in the world. Underground mining is the main practice. In the process of deep mining, large amounts of low-temperature waste heat are available such as in the mine return air (MRA), mine water (MW), bathing waste water (BWW), etc. Without recycling, the low-temperature waste heat is discharged directly into the atmosphere or into the drainage system. The temperature range of the MRA is about 15-25°C, the relative humidity (RH) of the MRA is above 90 per cent, the temperature range of MW is about 18-20°C and the temperature of the BWW is about 30°C. All of the above parameters are relatively stable throughout the year, and thus MRA, MW and BWW are proper low-temperature heat sources for water source heat pump (WSHP) systems. The study alms to introduce the schemes for recycling the different waste heat sources and the relevant key equipment and technology of each waste heat recycle system; analyze the heat recovery performances of the MRA heat recovery technology; and compare the economies between the MRA heat recovery system and the traditional system. Design/methodology/approach - Based on the WSHP system, heat and mass transfer efficiencies were calculated and analyzed, the outlet air velocity diffusion of the heat and mass transfer units and the parameters including air flow rate, the MRA's dry bulb temperatures and wet bulb temperatures at inlet and outlet of MRA heat exchanger were tested. Then, it was assessed whether this system can be applied to an actual construction. An actual reconstructive project of MRA heat recovery system is taken as an example, where the cost-saving effects of heat recovery of mine waste heat sources system are analyzed. Findings - Analysis of field test reveals that when heat transfer is stable, heat transfer capacity can be achieved: 957.6 kW in summer, 681 kW in winter and a large amount of heat was recycled. In an economic analysis, by comparing initial investment and 10 years' operation cost with the traditional boiler and central air conditioning system, the results show that although the MRA system's initial investment is high, this system can save CNY 6.26m in 10 years. Originality/value - MRA has a large amount of air volume and temperature that is constant throughout the year, and hence is a good low-temperature heat source for the WSHP system. It can replace boiler heating in winter and central air conditioning refrigeration In summer. The study reveals that this technology is feasible, and has good prospects for development.
机译:目的-目前,中国是世界上最大的煤炭生产国和消费国。地下采矿是主要做法。在深部开采过程中,可提供大量的低温废热,例如矿山的回风(MRA),矿井水(MW),沐浴废水(BWW)等。在不回收的情况下,低温废热直接排放到大气或排水系统中。 MRA的温度范围约为15-25°C,MRA的相对湿度(RH)高于90%,MW的温度范围约为18-20°C,BWW的温度约为30 ℃。以上所有参数在一年中相对稳定,因此MRA,MW和BWW是适用于水源热泵(WSHP)系统的低温热源。研究旨在介绍各种废热资源的回收利用方案以及各废热回收系统的相关关键设备和技术;分析MRA热回收技术的热回收性能;并比较了MRA热回收系统和传统系统之间的经济性。设计/方法/方法-基于WSHP系统,对传热和传质效率进行了计算和分析,传热和传质单元的出口空气速度扩散以及包括空气流速,MRA干球温度和湿球在内的参数测试了MRA热交换器入口和出口的温度。然后,评估了该系统是否可以应用于实际建筑。以MRA热回收系统的实际改造工程为例,分析了矿山余热源系统热回收的节约成本效果。研究结果-现场测试分析表明,当传热稳定时,可以实现传热能力:夏季为957.6 kW,冬季为681 kW,并回收了大量热量。在经济分析中,通过与传统锅炉和中央空调系统的初始投资和10年的运行成本进行比较,结果表明,尽管MRA系统的初始投资很高,但该系统在10年内可节省626万元人民币。原创性/价值-MRA的风量和温度全年都保持恒定,因此是WSHP系统的良好低温热源。它可以代替冬天的锅炉供暖和夏天的中央空调制冷。研究表明,该技术是可行的,具有良好的发展前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号