...
首页> 外文期刊>Journal of Microelectromechanical Systems >Fabrication and Characterization of a 3D Printed, MicroElectrodes Platform With Functionalized Electrospun Nano-Scaffolds and Spin Coated 3D Insulation Towards Multi- Functional Biosystems
【24h】

Fabrication and Characterization of a 3D Printed, MicroElectrodes Platform With Functionalized Electrospun Nano-Scaffolds and Spin Coated 3D Insulation Towards Multi- Functional Biosystems

机译:具有功能化电纺纳米脚手架和面向多功能生物系统的旋涂3D绝缘的3D打印微电极平台的制造和表征

获取原文
获取原文并翻译 | 示例
           

摘要

We demonstrate new fabrication technologies for 3D microelectrode platforms, fully realized for several 3D multi-functional biosystems. The microfabrication technology involves 3D metallized microtowers realized by 3D printing, metal evaporation, and coarse biocompatible lamination to insulate the traces. Electrospun 3D nanofiber scaffolds (NFSs) are coupled to the microelectrodes to provide additional functionality. The scaffolds were formed via electrospinning two types of nanofibers: similar to 200-500 nm PET, a hydrophobic polymer, and similar to 100 nm PVA/PAA, a hydrophilic co-polymer. PVA/PAA nanofibers had consistent diameters without beading and were used in subsequent experiments. Impedance measurements before, 651.3 k Omega , and after, 659.4 k Omega , deposition of PVA/PAA remains unchanged, indicating enhanced functionality without interfering with the electrical characteristics of the 3D MEAs. Silver nanoparticles (Ag NP) were embedded as model drug compounds in the PVA/PAA-NFS to demonstrate the potential of the 3D MEA as a biosensor and drug delivery system. TEM and antimicrobial studies demonstrated similar to 5-15 nm Ag NP within the PVA/PAA-NFS, which was potent to Acinetobacter baumannii and Escherichia coli. Fine 3D insulation atop the microtowers is achieved using a drop-casted/spin-coated 3D layer of Polystyrene (PS), which is laser micromachined to realize 50x 50 mu m(2) 3D microelectrodes with impedance properties similar to other reported approaches.
机译:我们演示了用于3D微电极平台的新制造技术,这些技术已完全实现了多种3D多功能生物系统。微制造技术涉及通过3D打印,金属蒸发和粗糙的生物相容性层压来实现痕迹绝缘的3D金属化微型塔。将静电纺3D纳米纤维支架(NFS)耦合到微电极以提供其他功能。支架是通过电纺两种类型的纳米纤维形成的:类似于200-500 nm的PET(疏水性聚合物)和类似于100 nm的PVA / PAA(亲水性共聚物)。 PVA / PAA纳米纤维具有一致的直径,没有珠粒,可用于后续实验。在PVA / PAA沉积651.3 kΩ和659.4 kΩ之后的阻抗测量保持不变,这表明功能增强了,而没有干扰3D MEA的电气特性。银纳米颗粒(Ag NP)作为模型药物化合物嵌入到PVA / PAA-NFS中,以证明3D MEA作为生物传感器和药物输送系统的潜力。 TEM和抗微生物研究表明,PVA / PAA-NFS中的5-15 nm Ag NP相似,对鲍曼不动杆菌和大肠杆菌很有效。使用滴铸/旋涂的聚苯乙烯(PS)3D层实现了微型塔顶部的精细3D绝缘,该层经激光微加工以实现50x 50μm(2)3D微电极,其阻抗特性与其他已报道的方法类似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号