首页> 外文期刊>Mechatronics, IEEE/ASME Transactions on >A Modified Dynamic Surface Controller for Delayed Neuromuscular Electrical Stimulation
【24h】

A Modified Dynamic Surface Controller for Delayed Neuromuscular Electrical Stimulation

机译:延迟神经肌肉电刺激的改进的动态表面控制器。

获取原文
获取原文并翻译 | 示例
       

摘要

A widely accepted model of muscle force generation during neuromuscular electrical stimulation (NMES) is a second-order nonlinear musculoskeletal dynamics cascaded to a delayed first-order muscle activation dynamics. However, most nonlinear NMES control methods have either neglected the muscle activation dynamics or used ad hoc strategies to tackle the muscle activation dynamics, which may not guarantee control stability. We hypothesized that a nonlinear control design that includes muscle activation dynamics can improve the control performance. In this paper, a dynamic surface control approach was used to design a proportional-integral-derivative (PID)-based NMES controller that compensates for electromechanical delays in the activation dynamics. Because the muscle activation is unmeasurable, a model-based estimator was used to estimate the muscle activation in real time. The Lyapunov stability analysis confirmed that the newly developed controller achieves uniformly ultimately bounded tracking for the musculoskeletal system. Experiments were performed on two able-bodied subjects and one spinal cord injury subject using a modified leg extension machine. These experiments illustrate the performance of the new controller and compare it with a previous PID-based controller with delay compensation controller that did not consider muscle activation dynamics in the control design. These experiments support our hypothesis that a control design that includes muscle activation improves the NMES control performance.
机译:神经肌肉电刺激(NMES)期间肌肉力量产生的一种广泛接受的模型是级联到延迟的一阶肌肉激活动力学的二阶非线性肌肉骨骼动力学。但是,大多数非线性NMES控制方法要么忽略了肌肉激活动力学,要么采用了专门的策略来解决肌肉激活动力学问题,这可能无法保证控制稳定性。我们假设包括肌肉激活动力学的非线性控制设计可以改善控制性能。在本文中,动态表面控制方法用于设计基于比例积分微分(PID)的NMES控制器,该控制器补偿了激活动力学中的机电延迟。由于肌肉的激活是无法测量的,因此使用基于模型的估计器来实时估计肌肉的激活。 Lyapunov稳定性分析证实,新开发的控制器可对肌肉骨骼系统实现统一的最终有界跟踪。使用改良的伸腿机对两名健壮受试者和一名脊髓损伤受试者进行了实验。这些实验说明了新控制器的性能,并将其与以前的带有延迟补偿控制器的基于PID的控制器进行了比较,后者在控制设计中未考虑肌肉激活动力学。这些实验支持我们的假设,即包括肌肉激活在内的控制设计可改善NMES控制性能。

著录项

  • 来源
    《Mechatronics, IEEE/ASME Transactions on》 |2017年第4期|1755-1764|共10页
  • 作者单位

    Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA;

    Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA;

    Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA;

    Department of Mechanical Engineering and Materials Science, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Muscles; Dynamics; Delays; Control design; Stability analysis; Knee;

    机译:肌肉;动力学;延迟;控制设计;稳定性分析;膝盖;
  • 入库时间 2022-08-17 13:03:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号