...
首页> 外文期刊>Mechanics of materials >Maxwell-Wagner-Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites
【24h】

Maxwell-Wagner-Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites

机译:石墨烯-聚合物纳米复合材料的电导率和介电常数与频率的关系的麦克斯韦-瓦格纳-西拉尔机理

获取原文
获取原文并翻译 | 示例
           

摘要

The Maxwell-Wagner-Sillars (MWS) effects have been reported in various experiments of graphene-polymer nanocomposites under AC loading. It is considered to be the source of the observed high dielectric constant for this class of nanocomposites. But at present no theory seems to exist to provide a physical description of this mechanism, and to transform this effect into the reported high electrical conductivity and dielectric permittivity. In this work we start out from consideration of high disparity of electrical conductivity between graphene and polymer phases to present such a description, and then integrate it into an effective-medium theory to illustrate how it affects the overall properties of the nanocomposite. We model this mechanism with numerous nanocapacitors at the graphene-polymer interfaces, whose charge accumulation is taken to be directly proportional to the difference of conductivities of graphene fillers and polymer matrix. In the context of complex conductivity, this formulation gives rise to an added frequency-dependent conductivity and permittivity of the interface regions. We highlight this theory with an application to reduced graphene oxide/polypropylene (rGO/PP) nanocomposites, and demonstrate that the calculated conductivity and permittivity are in close agreement with experimental data over the frequency range from 10(3) to 10(7) Hz. This study clearly demonstrates that the MWS mechanism is principally responsible for the frequency dependence of electrical conductivity and dielectric constant of graphene-polymer nanocomposites. (C) 2017 Elsevier Ltd. All rights reserved.
机译:石墨烯-聚合物纳米复合材料在交流电负荷下的各种实验中都报道了麦克斯韦-瓦格纳-西拉尔效应(MWS)。对于这类纳米复合材料,它被认为是观察到的高介电常数的来源。但是目前似乎没有理论可以提供这种机理的物理描述,也不能将这种效应转化为报道的高电导率和介电常数。在这项工作中,我们从考虑石墨烯和聚合物相之间的高电导率差异开始进行描述,然后将其整合到有效介质理论中,以说明其如何影响纳米复合材料的整体性能。我们用石墨烯-聚合物界面处的许多纳米电容器对该机理进行建模,其电荷积累被认为与石墨烯填料和聚合物基体的电导率之差成正比。在复数电导率的情况下,该公式会增加界面区域的频率相关电导率和介电常数。我们通过在还原氧化石墨烯/聚丙烯(rGO / PP)纳米复合材料中的应用突出了这一理论,并证明了在10(3)至10(7)Hz频率范围内,计算出的电导率和介电常数与实验数据非常吻合。这项研究清楚地表明,MWS机制主要负责石墨烯-聚合物纳米复合材料的电导率和介电常数的频率依赖性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Mechanics of materials》 |2017年第6期|42-50|共9页
  • 作者单位

    Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China|Rutgers State Univ, Dept Mech & Aerosp Engn, New Brunswick, NJ 08903 USA;

    Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China;

    Rutgers State Univ, Dept Mech & Aerosp Engn, New Brunswick, NJ 08903 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号