...
首页> 外文期刊>Mechanics of materials >Modeling microstructure evolution in magnesium: Comparison of detailed and reduced-order kinematic models
【24h】

Modeling microstructure evolution in magnesium: Comparison of detailed and reduced-order kinematic models

机译:镁的微观组织演化建模:详细运动学模型和降阶运动学模型的比较

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The inelastic behavior of hcp metals, such as magnesium (Mg) and its alloys, is dominated by the shortage of available slip systems and the resulting competition between dislocation slip and deformation twinning to accommodate large, irreversible deformation. A variety of models exist to describe the material behavior to varying degrees of accuracy and efficiency. Specifically, detailed crystal plasticity models account for the full set of slip and twin systems, thereby providing detailed microstructural insight at high computational costs. By contrast, reduced-order models aim to describe the same material response by a contracted set of phenomenological internal variables, resulting in significant efficiency gains at the cost of accuracy. Here, we contrast two such approaches for the example of pure Mg and apply those to model texture and yield surface evolution in applications including cold rolling and uniaxial compressions on textured Mg polycrystals. For the latter, we also compare simulated stress-strain predictions to experimental data. We highlight common features and key differences between the two models and compare their levels of accuracy and efficiency for the chosen applications. Our findings demonstrate that the efficient model agrees well with the full-detail calculations at lower levels of strain but shows deviations at large strains due to the missing account of lattice misorientation. We thus show that formulations employing differing kinematic assumptions can predict similar macroscopic behavior by altering material parameters (i.e., using a more detailed model to inform coarse-scale models). Published by Elsevier Ltd.
机译:hcp金属(例如镁(Mg)及其合金)的非弹性行为主要由可用滑移系统的不足以及位错滑移和变形孪生之间的竞争所引起,以适应大的不可逆变形。存在多种模型来描述材料行为,以不同程度的准确性和效率。具体而言,详细的晶体可塑性模型考虑了滑移和孪生系统的完整集合,从而以高计算成本提供了详细的微观结构见解。相比之下,降阶模型旨在通过一组现象学内部变量的收缩来描述相同的物质响应,从而以准确性为代价显着提高效率。在这里,我们将两种这样的方法作为纯Mg的示例进行对比,并将它们应用于模型化纹理并在包括纹理Mg多晶的冷轧和单轴压缩在内的应用中产生表面演化。对于后者,我们还将模拟的应力应变预测与实验数据进行比较。我们重点介绍了这两种模型之间的共同特点和主要区别,并比较了它们在所选应用中的准确性和效率水平。我们的发现表明,有效模型与较低应变水平下的全细节计算非常吻合,但由于缺少晶格取向错误而显示了较大应变下的偏差。因此,我们表明采用不同运动学假设的配方可以通过改变材料参数来预测相似的宏观行为(即,使用更详细的模型来告知粗尺度模型)。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号