...
首页> 外文期刊>Mechanics of materials >A discrete dislocation analysis of hydrogen-assisted mode-I fracture
【24h】

A discrete dislocation analysis of hydrogen-assisted mode-I fracture

机译:氢辅助I型骨折的离散位错分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Fracture of engineering alloys in the presence of hydrogen commonly occurs by decohesion along grain boundaries via a mechanism known as hydrogen induced decohesion (HID). This mechanism is investigated here by analysing the mode-I fracture of a single crystal with plastic flow in the crystal described by discrete dislocation plasticity (DDP) and material separation (decohesion) modelled using a cohesive zone formulation. The motion of dislocations is assumed to be unaffected by hydrogen diffusion. While the cohesive strength is assumed to be reduced proportional to the local hydrogen concentration. Two limiting cases are analysed: (i) the fast diffusion limit where the hydrogen within the material is assumed to be at chemical equilibrium throughout the loading so that there is a high hydrogen concentration in the regions of high hydrostatic stress around dislocations and near the crack tip and (ii) the slow diffusion limit where we assume that there is no appreciable hydrogen diffusion over the duration of loading and thus the hydrogen concentration remains spatially uniform as in a stress-free material. The lower cohesive strength at high hydrogen concentrations results in reduced dislocation activity around the crack tip and a reduction in the material toughness. In fact, at the highest hydrogen concentrations analysed here, crack growth primarily occurs in an elastic manner. However, surprisingly the calculations predicted that the toughness in the fast diffusion case was no more than 12% lower compared to the slow diffusion case suggesting that the stress concentrations due to the dislocation structures and the crack tip fields have only a minor effect on the toughness reduction in the presence of hydrogen. The DDP calculations are finally used to investigate the sensitivity of the material toughness to the grain boundary cohesive strength. The calculations show that the toughness of materials with a small cohesive opening at the peak cohesive traction are more sensitive to hydrogen loading. We speculate that this result might be used as a guide in grain boundary engineering to design alloys that are less sensitive to hydrogen embrittlement by the HID mechanism. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在存在氢的情况下,工程合金的断裂通常是通过一种称为氢诱导的脱粘(HID)的机制沿晶界脱粘而发生的。在此,通过分析单晶的I型断裂并利用在粘聚区配方中建模的离散位错可塑性(DDP)和材料分离(脱粘)描述了晶体中的塑性流动,从而研究了这种机理。假定位错的运动不受氢扩散的影响。而内聚强度被认为与局部氢浓度成比例地降低。分析了两种极限情况:(i)快速扩散极限,其中假设材料中的氢在整个加载过程中处于化学平衡状态,因此在位错附近和裂纹附近的高静水应力区域中存在高氢浓度提示和(ii)缓慢扩散极限,我们假设在加载过程中没有明显的氢扩散,因此氢浓度与无应力材料一样在空间上保持均匀。在高氢浓度下较低的内聚强度导致裂纹尖端周围的位错活性降低和材料韧性降低。实际上,在此处分析的最高氢浓度下,裂纹增长主要以弹性方式发生。但是,令人惊讶的是,计算结果预测,与缓慢扩散情况相比,快速扩散情况下的韧性不会降低不超过12%,这表明位错结构和裂纹尖端场引起的应力集中对韧性的影响很小。在氢存在下还原。 DDP计算最终用于研究材料韧性对晶界内聚强度的敏感性。计算表明,在峰值内聚力牵引下具有较小内聚力开口的材料的韧性对氢负荷更为敏感。我们推测,该结果可以用作晶界工程设计中通过HID机理对氢脆不敏感的合金的指导。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号