...
首页> 外文期刊>Mechanics of materials >Role of weak particle-matrix interfacial adhesion in deformation and fracture mechanisms of rigid particulate-filled poly(methyl methacrylate)
【24h】

Role of weak particle-matrix interfacial adhesion in deformation and fracture mechanisms of rigid particulate-filled poly(methyl methacrylate)

机译:弱颗粒-基质界面粘合在刚性颗粒填充聚甲基丙烯酸甲酯的变形和断裂机理中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Toughening glassy thermoplastics such as poly(methyl methacrylate) (PMMA) without sacrificing modulus and thermomechanical stability is a valuable but challenging objective. Rigid particulate fillers have been found to improve toughness of some polymers with complex dependence on matrix ductility, particle size, and particle-matrix interfacial adhesion. We tested the effects of both strong and weak interfacial adhesion on deformation and fracture of a model system comprising PMMA filled with monodisperse 1 mu m diameter silica spheres. Fracture energy G(IC) of PMMA was found to increase by over 50% when filled with 1 v% of weakly bonded particles, while the force observed during melt compounding increased by less than 15% and Young's modulus increased systematically with filler loading. However, G(IC) decreased with filler loading above 1 v%. This behavior is consistent with a modified Kinloch-type model considering localized shear banding and plastic void growth around debonded particles at the crack tip. The ability of the matrix to deform via shear yielding and plastic void growth was confirmed by digital image correlation measurement of volumetric strain in uniaxial tension. We have extended Kinloch's model to account for shortening of the crack tip craze by the particles, which reduces the intrinsic toughness and toughenability of the PMMA matrix. Particles with strong interfacial adhesion generally reduced toughness. The experimental and modeling results suggest weakly bonded particles with size on the order of the crack-tip craze width may provide optimum toughening of glassy thermoplastics. Published by Elsevier Ltd.
机译:在不牺牲模量和热机械稳定性的情况下,对玻璃状热塑性塑料(例如聚甲基丙烯酸甲酯(PMMA))进行增韧是一个有价值但具有挑战性的目标。已经发现,刚性的颗粒状填料可以提高某些聚合物的韧性,而复杂性取决于基质的延展性,粒度和颗粒与基质之间的界面粘合。我们测试了强界面粘合和弱界面粘合对包括PMMA的模型系统的变形和断裂的影响,该PMMA填充有1微米直径的单分散二氧化硅球。当填充1 v%的弱结合颗粒时,发现PMMA的断裂能G(IC)增加了50%以上,而熔融混合过程中观察到的力增加了不到15%,并且杨氏模量随着填料的加入而系统地增加。但是,随着填料含量超过1 v%,G(IC)降低。考虑到局部剪切带和裂纹尖端处脱胶颗粒周围的塑性空洞生长,该行为与修改的Kinloch型模型一致。通过单轴拉伸中的体积应变的数字图像相关测量,证实了基质通过剪切屈服和塑性空隙生长而变形的能力。我们扩展了Kinloch模型,以解决颗粒缩短裂纹尖端开裂的问题,从而降低了PMMA基体的固有韧性和韧性。具有强界面粘合性的颗粒通常会降低韧性。实验和模型结果表明,大小约等于裂纹尖端裂纹宽度的弱粘结颗粒可提供玻璃态热塑性塑料的最佳增韧效果。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号