首页> 外文期刊>Marine ecology progress series >Species densities, biological interactions and benthic ecosystem functioning: an in situ experiment
【24h】

Species densities, biological interactions and benthic ecosystem functioning: an in situ experiment

机译:物种密度,生物相互作用和底栖生态系统功能:原位实验

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding how biota affect the functioning of ecosystems is imperative if we are to predict the impacts of ongoing biodiversity change on ecosystem service provision. Evidence from marine sediments-the most widespread habitat on earth-suggests that ecological function delivery is driven by the presence and densities of certain species. However, most experiments have been conducted using fixed density treatments and run for short durations (<4 wk) within homogenous laboratory microcosms. In nature, the impact of changing density in one species may depend on consequent changes in the densities of others. Moreover, evidence from vegetation assemblages suggests that the influence of complementarity among species increases in heterogeneous environments and over time. Here, we simulated a realistic pattern of biodiversity change by transplanting the macroinfaunal bivalve Scrobicularia plana into an intertidal mudflat at various densities. The impact on redox potential discontinuity (RPD) depth (a proxy for benthic functioning) was measured at 1, 5 and 9 wk. Increasing S. plana density negatively affected RPD depth (i.e. RPD depth became shallower) by causing the density of a functionally dominant species, Corophium volutator, to decline. Furthermore, the influence of density-dependent interspecific interactions (among macroinfauna) on RPD depth became increasingly positive as the experiment progressed. Our results reaffirm the direct functional importance of certain species in a natural ecosystem and highlight the indirect importance of other species to which their density is tightly coupled. An implication is that species loss could enhance functioning if it causes the density of a functionally dominant species to increase. Nevertheless, the apparent temporal emergence of interspecific facilitation suggests that diverse species assemblages promote high function delivery.
机译:如果我们要预测正在进行的生物多样性变化对生态系统服务提供的影响,则必须了解生物群落如何影响生态系统的功能。来自海洋沉积物(地球上最广泛的栖息地)的证据表明,生态功能的传递是由某些物种的存在和密度驱动的。但是,大多数实验都是使用固定密度处理进行的,并且在同类实验室缩影内进行了短时间(<4 wk)的测试。在自然界中,一个物种密度变化的影响可能取决于其他物种密度的变化。此外,来自植被集合的证据表明,物种间互补性的影响在异构环境中随着时间的推移而增加。在这里,我们通过将大型蟾蜍双壳类轮盘菌移植到各种密度的潮间带滩涂中,模拟了生物多样性变化的现实模式。对氧化还原电位不连续(RPD)深度(底栖功能的代理)的影响在1、5和9周被测量。平面葡萄球菌密度的增加会导致功能优势种(Corophium v​​olutator)的密度下降,从而对RPD深度产生负面影响(即RPD深度变浅)。此外,随着实验的进行,密度依赖性种间相互作用(在大型动物中)对RPD深度的影响变得越来越积极。我们的结果重申了某些物种在自然生态系统中的直接功能重要性,并强调了密度紧密相关的其他物种的间接重要性。暗示是,如果物种丧失引起功能优势物种的密度增加,则其功能可能增强。然而,种间促进的明显时间性出现表明,不同物种的组合促进了高功能传递。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号