...
首页> 外文期刊>Magazine of Concrete Research >Polypropylene fibres in heated concrete. Part 2: Pressure relief mechanisms and modelling criteria
【24h】

Polypropylene fibres in heated concrete. Part 2: Pressure relief mechanisms and modelling criteria

机译:加热混凝土中的聚丙烯纤维。第2部分:泄压机制和建模标准

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Polypropylene (PP) fibres play a role in reducing pore pressures via a number of possible mechanisms which include reservoirs (e.g. air bubbles and micro-cracks) to accommodate expanding steam as well as continuous channels for moisture-vapour migration (e.g. via pressure-induced tangential space (PITS) or through spaces vacated by vaporisation of the polypropylene fibres). In the melt stage, PP would not easily transport through the concrete pore structure but would be able to do so in the vapour stage. The effectiveness of the pressure release mechanisms depends not only on the characteristics of PP material but also on the characteristics of the fibre itself in terms of its dimensions. Aspect ratios by themselves are meaningless and the important parameters are the actual fibre diameter and length. Key parameters that could influence pore pressure reduction are the number of fibres, the cumulative length and cumulative surface area of the fibres as well as fibre interconnectivity, all of which increase with reduction in fibre diameter for a given individual fibre length. An optimum individual fibre length would exist that allows both interconnectivity and good dispersion. Criteria for thermo-hydro-numerical modelling would depend upon the physical, chemical, thermal and mechanical properties and their interrelation with the surrounding matrix. Smeared properties can be assumed, although meso-level modelling at the micrometre scale simulating individual fibres and other concrete constituents would be useful, especially in modelling PITS. The assumptions made for modelling would depend upon the transformations taking place as temperature increases during a fire. These are divided into five temperature ranges of 20-100℃, 100-165℃, 165-475℃, 475-550℃ and above 550℃.
机译:聚丙烯(PP)纤维通过多种可能的机制在降低孔隙压力中起作用,这些机制包括用于容纳膨胀蒸汽的储层(例如气泡和微裂纹)以及用于水分蒸汽迁移的连续通道(例如通过压力诱导)切向空间(PITS)或通过聚丙烯纤维的汽化而腾空的空间)。在熔融阶段,PP不会轻易通过混凝土孔结构传输,但在蒸汽阶段能够传输。压力释放机构的有效性不仅取决于PP材料的特性,还取决于纤维本身的尺寸(尺寸)。长宽比本身是没有意义的,重要的参数是实际的纤维直径和长度。可能影响孔隙压力降低的关键参数是纤维数量,纤维的累积长度和累积表面积以及纤维互连性,对于给定的单个纤维长度,所有这些参数都随纤维直径的减小而增加。将存在一个最佳的单根光纤长度,该长度可同时实现互连和良好的色散。热-水-数字建模的标准将取决于物理,化学,热和机械性能及其与周围基质的相互关系。尽管在微米尺度上模拟单个纤维和其他混凝土成分的细观水平建模将是有用的,但尤其是在对PITS进行建模时,可以假定具有涂抹特性。用于建模的假设将取决于火灾期间温度升高而发生的转换。这些温度分为5个温度范围:20-100℃,100-165℃,165-475℃,475-550℃和550℃以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号