首页> 外文期刊>Journal of Seismic Exploration >EVALUATING MARINE GAS-HYDRATE SYSTEMS PART I: STOCHASTIC ROCK-PHYSICS MODELS FOR ELECTRICAL RESISTIVITY AND SEISMIC VELOCITIES OF HYDRATE-BEARING SEDIMENTS
【24h】

EVALUATING MARINE GAS-HYDRATE SYSTEMS PART I: STOCHASTIC ROCK-PHYSICS MODELS FOR ELECTRICAL RESISTIVITY AND SEISMIC VELOCITIES OF HYDRATE-BEARING SEDIMENTS

机译:评估海洋天然气水合物系统第一部分:含水合物沉积物的电阻率和地震波速的随机岩石物理模型

获取原文
获取原文并翻译 | 示例
           

摘要

There is an increased need for investigating marine gas-hydrate systems to estimate the magnitude of the energy resource represented by the hydrate and to identify any unstable seafloor conditions that may result from hydrate dissociation, which can jeopardize drilling activities. Deep-water gas-hydrate systems can be studied on large scales with geophysical techniques, such as seismic and electrical surveys. To evaluate near-seafloor gas-hydrate environments we first need to build rock-physics quantitative relations between measurable parameters, such as elastic and electrical properties of sediments containing hydrates, and gas-hydrate saturation. In this study we assume a model of isotropic, load-bearing hydrates, uniformly distributed in the near-seafloor sediments. This Part I of a 2-paper series presents a method for stochastic joint modeling of elastic properties and electrical resistivity of gas-hydrate sediments. The petrophysical parameters involved in the modeling are difficult to estimate and are uncertain. Therefore, probability distribution functions (PDFs) are used to account for the uncertainty associated with each of the petrophysical quantities involved in the modeling. Both electrical resistivity and seismic velocities depend on porosity of the sediments and hydrate concentration, and we refer to them as common model parameters. A Monte Carlo procedure is used to draw values for these common parameters from their associated PDFs and then compute the corresponding velocity and electrical resistivity values using Monte Carlo draws from the PDFs for each of the petrophysical parameters that are required for elastic modeling and for Archie equation for electrical resistivity. The outcome of this procedure is represented by many Monte Carlo realizations that jointly relate hydrate concentration, resistivity, and seismic propagation velocity. This joint relation varies with depth and it is non-unique and uncertain due to variability of the input parameters. These theoretical relations can then be used to estimate hydrate concentration in Green Canyon Gulf of Mexico through a joint inversion technique presented in the Part II.
机译:越来越需要研究海洋天然气水合物系统,以估算由水合物代表的能源资源的规模,并确定可能因水合物分解而造成的任何不稳定的海床状况,这会危害钻井活动。可以使用地球物理技术(例如地震和电勘测)对深水天然气水合物系统进行大规模研究。为了评估近海天然气水合物环境,我们首先需要在可测量参数(例如包含水合物的沉积物的弹性和电学性质)与天然气水合物饱和度之间建立岩石物理定量关系。在这项研究中,我们假设一个各向同性的,承载水合物的模型,这些模型均匀地分布在近海底沉积物中。两篇论文系列的第一部分介绍了一种随机联合建模方法,用于模拟天然气水合物沉积物的弹性和电阻率。建模中涉及的岩石物理参数难以估计且不确定。因此,概率分布函数(PDF)用于解释与建模中涉及的每个岩石物理量相关的不确定性。电阻率和地震速度都取决于沉积物的孔隙率和水合物浓度,我们将它们称为通用模型参数。蒙特卡罗程序用于从其关联的PDF绘制这些常用参数的值,然后使用弹性建模和Archie方程所需的每个岩石物理参数使用PDF的Monte Carlo绘制来计算相应的速度和电阻率值电阻率。该过程的结果由许多蒙特卡洛实现表示,这些实现将水合物浓度,电阻率和地震传播速度联系在一起。该联合关系随深度而变化,并且由于输入参数的可变性,因此是非唯一且不确定的。然后,通过第二部分介绍的联合反演技术,这些理论关系可用于估算墨西哥绿色峡谷海湾中的水合物浓度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号