...
首页> 外文期刊>Journal of power sources >Pulsed laser deposition of manganese oxide thin films for supercapacitor applications
【24h】

Pulsed laser deposition of manganese oxide thin films for supercapacitor applications

机译:超级电容器应用的脉冲激光沉积氧化锰薄膜

获取原文
获取原文并翻译 | 示例
           

摘要

Thin films of manganese oxides have been grown by the pulsed laser deposition (PLD) process on silicon wafer and stainless steel substrates at different substrate temperatures and oxygen gas pressures. By proper selection of processing parameters such as temperature and oxygen pressure during the PLD process, pure crystalline phases of Mn2O3, Mn3O4 as well as amorphous phase of MnOx were successfully fabricated as identified by X-ray diffraction. The pseudo-capacitance behaviours of these different phases of manganese oxides have also been evaluated by the electrochemical cyclic voltammetry measured in 0.1 M Na2SO4 aqueous electrolyte at different scan rates. Their specific current and capacitance determined by electrochemical measurements were compared and the results show that crystalline Mn2O3 phase has the highest specific current and capacitance, while the values for crystalline MnsO4 films are the lowest. The specific current and capacitance values of the amorphous MnO, films are lower than Mn2O3 but higher than Mn3O4. The specific capacitance of Mn2O3 films of 120nm thick reaches 210Fg-1 at 1 mVs-1 scan rate with excellent stability and cyclic durability. This work has demonstrated that PLD is a very promising technique for screening high performance active materials for supercapacitor applications due to its excellent flexibility and capability of easily controlling chemical composition, microstructures and phases of materials.
机译:已经通过脉冲激光沉积(PLD)工艺在不同的基板温度和氧气压力下在硅片和不锈钢基板上生长了氧化锰薄膜。通过适当选择PLD工艺过程中的温度和氧气压力等工艺参数,成功制备了Mn2O3,Mn3O4的纯晶相以及MnOx的非晶相,这是通过X射线衍射确定的。还已经通过在0.1 M Na2SO4水溶液中以不同扫描速率测量的电化学循环伏安法评估了这些不同相的锰氧化物的拟电容行为。通过电化学测量确定了它们的比电流和电容,结果表明,结晶的Mn2O3相具有最高的比电流和电容,而结晶的MnsO4膜的值最低。非晶态MnO薄膜的比电流和电容值低于Mn2O3但高于Mn3O4。 120 nm厚的Mn2O3薄膜的比电容在1 mVs-1的扫描速率下达到210Fg-1,具有出色的稳定性和循环耐久性。这项工作表明,PLD由于具有出色的柔韧性和易于控制材料的化学成分,微观结构和相的能力,因此是筛选用于超级电容器应用的高性能活性材料的非常有前途的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号