...
首页> 外文期刊>Journal of power sources >Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance
【24h】

Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance

机译:高度有序的层状基于V2O3的混合纳米棒,可提供卓越的锂离子水溶液性能

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium-ion batteries with green and inexpensive aqueous electrolytes solve the safety problem associated with conventional lithium-ion batteries that use highly toxic and flammable organic solvents, which usually cause fires and explosions. However, the relatively low capacities (usually < 65 mAh g-1) and less than 50% capacity retention over 50 cycles unfortunately limit their promising applicability. Herein, a novel model of ordered lamellar organic-inorganic hybrid nanorods is first put forward as an excellent platform to circumvent the above issues. Taking the synthetic highly ordered lamellar V2O3-based hybrid nanorods as an example, they deliver a capacity up to 131 mAhg-1, nearly 1.5 and 2 times higher than that of 10-nm V2O3 nanocrystals (90mAhg-1) and 2-u.m bulk V2O3 (73.9 mAh g-1). Also, their excellent cyclability of 88% after 50 cycles is remarkably better than that of 10-nm V2O3 nanocrystals (64%) and 2-μm bulk V2O5 (41%). This work provides a facile route for gram-scale synthesizing highly ordered lamellar hybrid materials and proves that these unique structures are excellent platforms for significantly improving aqueous lithium-ion battery performances especially at high discharge rates, giving tantalizing perspectives in future design and synthesis of high-performance active materials for aqueous lithium-ion batteries.
机译:具有绿色且廉价的水性电解质的锂离子电池解决了与常规锂离子电池相关的安全问题,传统锂离子电池使用剧毒和易燃的有机溶剂,通常会引起火灾和爆炸。但是,相对较低的容量(通常<65 mAh g-1)和在50个循环中的容量保持率不足50%不幸地限制了它们的应用前景。在本文中,首先提出了一种有序层状有机-无机杂化纳米棒的新型模型,作为解决上述问题的绝佳平台。以合成的高度有序的层状基于V2O3的杂化纳米棒为例,它们提供的容量高达131 mAhg-1,比​​10纳米V2O3纳米晶体(90mAhg-1)和2um体积的容量高出近1.5倍和2倍。 V2O3(73.9 mAh g-1)。而且,它们在50个循环后的88%的出色循环能力显着优于10-nm V2O3纳米晶体(64%)和2μm块状V2O5(41%)。这项工作为克级合成高度有序的层状混合材料提供了一条简便的途径,并证明了这些独特的结构是出色的平台,可显着改善水性锂离子电池的性能,尤其是在高放电速率下,为将来的高纯度锂离子电池的设计和合成提供了诱人的见解。水性锂离子电池的高性能活性材料。

著录项

  • 来源
    《Journal of power sources》 |2011年第20期|p.8644-8650|共7页
  • 作者单位

    Hefei National Laboratory for Physical Sciences at Microscale, University of Science & Technology of China, Hefei, Anhui 230026, PR China;

    Hefei National Laboratory for Physical Sciences at Microscale, University of Science & Technology of China, Hefei, Anhui 230026, PR China;

    Hefei National Laboratory for Physical Sciences at Microscale, University of Science & Technology of China, Hefei, Anhui 230026, PR China;

    Hefei National Laboratory for Physical Sciences at Microscale, University of Science & Technology of China, Hefei, Anhui 230026, PR China;

    Hefei National Laboratory for Physical Sciences at Microscale, University of Science & Technology of China, Hefei, Anhui 230026, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ordered; lamellar; vanadium trioxide; nanorods; aqueous lithium-ion battery;

    机译:订购;薄片;三氧化二钒;纳米粒子;锂离子水溶液;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号