...
首页> 外文期刊>Journal of power sources >Towards H2-rich gas production from unmixed steam reforming of methane: Thermodynamic modeling
【24h】

Towards H2-rich gas production from unmixed steam reforming of methane: Thermodynamic modeling

机译:从甲烷的混合蒸汽重整转化为富氢气体的生产:热力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, the Gibbs energy minimization method is applied to investigate the unmixed steam reforming (USR) of methane to generate hydrogen for fuel cell application. The USR process is an advanced reforming technology that relies on the use of separate air and fuel/steam feeds to create a cyclic process. Under air flow (first half of the cycle), a bed of Ni-based material is oxidized, providing the heat necessary for the steam reforming that occurs subsequently during fuel/steam feed stage (second half of the cycle). In the presence of CaO sorbent, high purity hydrogen can be produced in a single reactor. In the first part of this work, it is demonstrated that thermodynamic predictions are consistent with experimental results from USR isothermal tests under fuel/steam feed. From this, it is also verified that the reacted NiO to CH4 (NiOreacted/CH4) molar ratio is a very important parameter that affects the product gas composition and decreases with time. At the end of fuel/steam flow, the reforming reaction is the most important chemical mechanism, with H2 production reaching ~75 mol%. On the other hand, at the beginning of fuel/steam feed stage, NiO reduction reactions dominate the equilibrium system, resulting in high CO2 selectivity, negative steam conversion and low concentrations of H2. In the second part of this paper, the effect of NiOreacted/CH4 molar ratio on the product gas composition and enthalpy change during fuel flow is investigated at different temperatures for inlet H2O/CH4 molar ratios in the range of 1.2-4, considering the USR process operated with and without CaO sorbent. During fuel/steam feed stage, the energy demand increases as time passes, because endothermic reforming reaction becomes increasingly important as this stage nears its end. Thus, the duration of the second half of the cycle is limited by the conditions under which auto-thermal operation can be achieved. In absence of CaO, H2 at concentrations of approximately 73 mol% can be produced under thermo-neutral conditions (H2O/CH4 molar ratio of 4, with NiOreacted/CH4 molar ratio at the end of fuel flow of ~0.8, in temperature range of 873-1073 K). In the presence of CaO sorbent, using an inlet H2O/CH4 molar ratio of 4 at 873 K, H2 at concentrations over 98 mol% can be obtained all through fuel/steam feed stage. At 873 K, carbonation reaction provides all the heat necessary for H2 production when NiOreacted/CH4 molar ratio reached at the end of fuel/steam feed is greater or equal tol. In this way, the heat released during air flow due to Ni oxidation can be entirely used to decompose CaCO3 into CaO. In this case, a calcite-to-nickel molar ratio of 1.4 (maximum possible value) can be used during air flow. For longer durations of fuel/steam feed, corresponding to lower NiOreacted/CH4 molar ratios, some heat is necessary for steam reforming, and a calcite-to-nickel molar ratio of about 0.7 is more suitable. With the USR technology, CaO can be regenerated under air feeds, and an economically feasible process can be achieved.
机译:在这项工作中,吉布斯能量最小化方法用于研究甲烷的未混合蒸汽重整(USR)来产生氢以用于燃料电池。 USR工艺是一种先进的重整技术,它依赖于使用单独的空气和燃料/蒸汽进料来创建循环工艺。在空气流动下(循环的前半部分),镍基材料床被氧化,提供蒸汽重整所需的热量,随后在燃料/蒸汽进料阶段(循环的后半部分)发生。在CaO吸附剂的存在下,可以在单个反应器中生产高纯度氢。在这项工作的第一部分,证明了热力学预测与在燃料/蒸汽进料下的USR等温试验的实验结果一致。由此可以证实,反应后的NiO与CH4的摩尔比(NiO反应/ CH4)是一个非常重要的参数,它影响产物气体的组成并随时间降低。在燃料/蒸汽流结束时,重整反应是最重要的化学机理,H2生成量达到〜75 mol%。另一方面,在燃料/蒸汽进料阶段开始时,NiO还原反应在平衡系统中占主导地位,导致高的CO2选择性,负的蒸汽转化率和低的H2浓度。在本文的第二部分中,考虑了USR,研究了在不同温度下,入口H2O / CH4摩尔比为1.2-4时,NiO反应/ CH4摩尔比对产物气体组成和燃料流动过程中焓变的影响。有或没有CaO吸附剂的过程在燃料/蒸汽进料阶段,随着时间的流逝,能量需求增加,因为随着该阶段的临近,吸热重整反应变得越来越重要。因此,循环的后半段的持续时间受到可以实现自动热操作的条件的限制。在不存在CaO的情况下,在热中性条件下(H2O / CH4摩尔比为4,其中NiO反应/ CH4摩尔比在〜0.8的燃料流量结束时)在温度中性条件下可以生成浓度约为73 mol%的H2。 873-1073 K)。在存在CaO吸附剂的情况下,如果在873 K下使用入口H2O / CH4摩尔比为4,则可以通过整个燃料/蒸汽进料阶段获得浓度超过98 mol%的H2。在873 K时,当在燃料/蒸汽进料结束时达到的NiO反应/ CH4摩尔比大于或等于1时,碳化反应会提供H2产生所需的所有热量。这样,由于Ni氧化而在空气流动过程中释放的热量可以完全用于将CaCO3分解为CaO。在这种情况下,方解石与镍的摩尔比为1.4(最大可能值)。对于较长时间的燃料/蒸汽进料,对应于较低的NiO反应/ CH4摩尔比,蒸汽重整需要一定的热量,方解石与镍的摩尔比约为0.7更合适。借助USR技术,CaO可以在进气下再生,并且可以实现经济上可行的过程。

著录项

  • 来源
    《Journal of power sources》 |2011年第20期|p.8568-8582|共15页
  • 作者单位

    Program of Postgraduate Studies in Mining, Metals and Materials Engineering (PPGEM), Federal University of Rio Grande do Sul - UFRGS, Campus do Vale. Setor 4, Predio 75, Sola 226, Av. Bento Goncalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil;

    Program of Postgraduate Studies in Mining, Metals and Materials Engineering (PPGEM), Federal University of Rio Grande do Sul - UFRGS, Campus do Vale. Setor 4, Predio 75, Sola 226, Av. Bento Goncalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hydrogen; chemical looping; unmixed reforming; fuel cells; thermodynamic analysis; nickel oxide;

    机译:氢;化学环;非混合重整;燃料电池;热力学分析;氧化镍;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号