...
首页> 外文期刊>Journal of intelligent material systems and structures >Electrical self-sensing of strain and damage of thermoplastic hierarchical composites subjected to monotonic and cyclic tensile loading
【24h】

Electrical self-sensing of strain and damage of thermoplastic hierarchical composites subjected to monotonic and cyclic tensile loading

机译:承受单调和循环拉伸载荷的热塑性多层复合材料的应变和损伤的电自感测

获取原文
获取原文并翻译 | 示例
           

摘要

Electrical monitoring of strain and damage in multiscale hierarchical composites comprising unidirectional aramid fibers modified by multiwall carbon nanotubes and polypropylene as matrix is investigated. The key factor for electrical self-sensing in these thermoplastic composites is the formation of a multiwall carbon nanotube network, which is achieved by using two material architectures. In the first architecture, the multiwall carbon nanotubes are dispersed within the polypropylene matrix, while aramid fibers remain unmodified. The second architecture uses also multiwall carbon nanotube-modified polypropylene matrix, but the aramid fibers are also modified by depositing multiwall carbon nanotubes. Under tensile loading, the electrical response is nonlinear with strain (epsilon), and the piezoresistive sensitivity was quantified by gage factors corresponding to low (epsilon0.25%) and high (epsilon0.3%) strain regimes. Such gage factors were 4.83 (for epsilon0.25%) and 13.2 (for epsilon0.3%) for composites containing multiwall carbon nanotubes only in the polypropylene matrix. The composites containing multiwall carbon nanotubes in the matrix and fibers presented higher piezoresistive sensitivity, with average gage factors of 9.24 (epsilon0.25%) and 14.0 (epsilon0.3%). The higher sensitivity to strain and damage for a specific material architecture was also evident during cyclic and constant strain loading programs and is attributed to the preferential localization of multiwall carbon nanotubes in the hierarchical composite.
机译:研究了以多壁碳纳米管和聚丙烯为基质的单向芳族聚酰胺纤维改性的多尺度分层复合材料中应变和损伤的电学监测。这些热塑性复合材料中电自感应的关键因素是多壁碳纳米管网络的形成,这是通过使用两种材料结构实现的。在第一种结构中,多壁碳纳米管分散在聚丙烯基质中,而芳族聚酰胺纤维则保持不变。第二种结构也使用多壁碳纳米管改性的聚丙烯基质,但是芳族聚酰胺纤维也通过沉积多壁碳纳米管进行改性。在拉伸载荷下,电响应随应变(ε)呈非线性变化,压阻灵敏度通过对应于低应变(ε<0.25%)和高应变(ε> 0.3%)的应变系数来量化。对于仅在聚丙烯基质中包含多壁碳纳米管的复合材料,这样的应变系数是4.83(对于ε<0.25%)和13.2(对于ε> 0.3%)。在基体和纤维中包含多壁碳纳米管的复合材料表现出较高的压阻敏感性,平均应变系数为9.24(ε<0.25%)和14.0(ε> 0.3%)。在循环和恒定应变加载程序中,对于特定材料结构的应变和损伤敏感性更高,这也很明显,这归因于多层复合材料中多壁碳纳米管的优先定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号