...
首页> 外文期刊>Journal of intelligent material systems and structures >Electromechanical Modeling and Normal Form Analysis of an Aeroelastic Micro-Power Generator
【24h】

Electromechanical Modeling and Normal Form Analysis of an Aeroelastic Micro-Power Generator

机译:气动弹性微型发电机的机电建模和正态分析

获取原文
获取原文并翻译 | 示例
           

摘要

Combining theories in continuous-systems vibrations, piezoelectricity, and fluid dynamics, we develop and experimentally validate an analytical electromechanical model to predict the response behavior of a self-excited micro-power generator. Similar to music-playing harmonica that create tones via oscillations of reeds when subjected to air blow, the proposed device uses flow-induced self-excited oscillations of a piezoelectric beam embedded within a cavity to generate electric power. To obtain the desired model, we adopt the nonlinear Euler-Bernoulli beam's theory and linear constitutive relationships. We use Hamilton's principle in conjunction with electric circuits theory and the inextensibility condition to derive the partial differential equation that captures the transversal dynamics of the beam and the ordinary differential equation governing the dynamics of the harvesting circuit. Using the steady Bernoulli equation and the continuity equation, we further relate the exciting pressure at the surface of the beam to the beam's deflection, and the inflow rate of air. Subsequently, we employ a Galerkin's descritization to reduce the order of the model and show that a single-mode reduced-order model of the infinite-dimensional system is sufficient to predict the response behavior. Using the method of multiple scales, we develop an approximate analytical solution of the resulting reduced-order model near the stability boundary and study the normal form of the resulting bifurcation. We observe that a Hopf bifurcation of the supercritical nature is responsible for the onset of limit-cycle oscillations.
机译:结合连续系统振动,压电和流体动力学中的理论,我们开发并通过实验验证了解析机电模型,以预测自激微发电机的响应行为。类似于吹奏口琴时吹气时簧片会产生音调的音乐演奏口琴,该装置使用了嵌入空腔中的压电束的流致自激振荡来产生电能。为了获得所需的模型,我们采用了非线性Euler-Bernoulli梁理论和线性本构关系。我们将汉密尔顿原理与电路理论和不可扩展条件结合起来,得出捕获束的横向动力学的偏微分方程和控制收割电路动力学的常微分方程。使用稳态伯努利方程和连续性方程,我们进一步将梁表面的激发压力与梁的挠度以及空气的流入速率相关联。随后,我们采用加勒金法除法来减少模型的阶数,并表明无限维系统的单模降阶模型足以预测响应行为。使用多尺度方法,我们在稳定性边界附近开发了所得降阶模型的近似解析解,并研究了所得分叉的正态形式。我们观察到,超临界性质的霍普夫分叉是造成极限循环振荡的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号