...
首页> 外文期刊>Journal of intelligent material systems and structures >Evaluation by fast Fourier transforms analysis of energy harvesting in electrostrictive polymers driven by an electric field and a mechanical excitation
【24h】

Evaluation by fast Fourier transforms analysis of energy harvesting in electrostrictive polymers driven by an electric field and a mechanical excitation

机译:通过电场和机械激励驱动的电致伸缩聚合物中能量收集的快速傅里叶变换分析评估

获取原文
获取原文并翻译 | 示例
           

摘要

Electrostrictive polymers offer the promise of energy harvesting with few moving parts where power can be produced simply by stretching and contracting a relatively low-cost rubbery material. The use of such polymers for energy harvesting is a growing field, which has great potential from an energy density viewpoint. Basically, the relative energy gain depends on the current induced by the mechanical strain and frequency. A previous study in the Laboratoire de Genie Electrique et Ferroelectricite laboratory has indicated that one can measure the dielectric constant, the Young's modulus, and the electrostrictive coefficient of a polymer film by determining the current flowing through the sample when the polymer film was simultaneously driven by an electrical field and mechanical excitation. The goal of this study has thus been to develop a solution for artificially increasing the coupling factor of electrostrictive materials, based on the optimization of the frequency of the electric field and the amplitude strain of the mechanical excitation leading to an increase in the generated current. When relating this parameter with a transverse strain of 5% and a bias field of 10 V/μm, it was found that such a process rendered it able to increase the converted power to 14 μW at a mechanical frequency of 6 Hz. The converted power was much higher than for the frequency of 3 Hz for which a low power was consumed by the polarization of the polymer. The theoretical analysis was supported by the experimental investigations. The contribution of this study provides a framework for developing energy harvesting techniques that should improve the overall performance of the system.
机译:电致伸缩聚合物提供了以很少的运动部件进行能量收集的希望,在这些运动部件中,只需通过拉伸和收缩成本相对较低的橡胶状材料即可产生动力。从能量密度的观点来看,使用这种聚合物进行能量收集是一个发展中的领域。基本上,相对能量增益取决于机械应变和频率感应的电流。以前在Genie Electrique等铁电实验室的一项研究表明,当聚合物膜同时受驱动时,通过确定流经样品的电流,可以测量聚合物膜的介电常数,杨氏模量和电致伸缩系数。电场和机械激励。因此,本研究的目标是基于电场频率和导致产生电流增加的机械激励振幅应变的优化,开发一种人为增加电致伸缩材料耦合因子的解决方案。当将此参数与5%的横向应变和10 V /μm的偏置场相关时,发现这种过程使其能够在6 Hz的机械频率下将转换后的功率增加到14μW。转换后的功率远远高于3 Hz的频率,因为聚合物的极化消耗了低功率。理论分析得到了实验研究的支持。这项研究的成果为开发可以改善系统整体性能的能量收集技术提供了框架。

著录项

  • 来源
  • 作者单位

    DAC HR Laboratory, Ferhat Abbas University, Setif, Algeria,Laboratoire de Genie Electrique et Ferroelectricite (LGEF), INSA LYON, Villeurbanne, Cedex, France;

    Laboratoire de Genie Electrique et Ferroelectricite (LGEF), INSA LYON, Villeurbanne, Cedex, France,Laboratoire de la physique de la matiere condensee, Faculte des sciences, Universite Chouaib Doukkali, El Jadida, Morocco;

    Laboratoire de Genie Electrique et Ferroelectricite (LGEF), INSA LYON, Villeurbanne, Cedex, France;

    DAC HR Laboratory, Ferhat Abbas University, Setif, Algeria;

    Laboratoire de Genie Electrique et Ferroelectricite (LGEF), INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex, France;

    Laboratoire de Genie Electrique et Ferroelectricite (LGEF), INSA LYON, Villeurbanne, Cedex, France;

    Laboratoire de la physique de la matiere condensee, Faculte des sciences, Universite Chouaib Doukkali, El Jadida, Morocco,Hassan II Academy of Science and Technology, Rabat, Morocco;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electrostrictive polymer; energy harvesting; fast Fourier transform analyses;

    机译:电致伸缩聚合物;能量收集;快速傅立叶变换分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号