...
首页> 外文期刊>Journal of intelligent material systems and structures >Characterization of the pyroelectric coefficient of a high-temperature sensor
【24h】

Characterization of the pyroelectric coefficient of a high-temperature sensor

机译:高温传感器热释电系数的表征

获取原文
获取原文并翻译 | 示例
           

摘要

Temperature is one of the most important thermodynamic properties measured and controlled in energy generation systems. To operate the energy system at optimum operating conditions for lower emission and higher efficiency, it is important to measure real-time temperatures. Furthermore, temperature sensing in intense environments is necessary since most sensors in energy systems get exposed to elevated temperatures, corrosive environments, and elevated pressures. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, Lithium niobate (LiNbO3) pyroelectric ceramic material was used to develop a temperature sensor for high-temperature applications. LiNbO3 has high Curie temperature (1210 degrees C) compared to other pyroelectric ceramic materials. A high Curie temperature material is important since the polarization properties of the material break down above the Curie temperature. Hence, the use of a material with a higher Curie temperature, such as LiNbO3, makes it promising to be used as a sensing material for high-temperature applications. A study was performed to actively measure the temperature up to 500 degrees C using a pyroelectric ceramic lithium niobate (LiNbO3) as a sensor material. Due to the non-linear pyroelectric response of LiNbO3, the temperature-dependent pyroelectric coefficient of LiNbO3 was measured with a dynamic pyroelectric coefficient technique in temperature ranges up to 500 degrees C. Temperature-dependent pyroelectric coefficient of LiNbO3 was found to increase from -0.5x10(-5) to -3.70x10(-5)C/m(2)degrees C from room temperature to 500 degrees C. The LiNbO3 sensor was then tested for higher temperature sensing at 220 degrees C, 280 degrees C, 410 degrees C, and 500 degrees C and has shown 4.31%, 2.1%, 0.4%, and 0.6% deviation, respectively, compared with thermocouple measurements.
机译:温度是在能量产生系统中测量和控制的最重要的热力学性质之一。为了使能源系统在最佳工作条件下运行以降低排放和提高效率,测量实时温度非常重要。此外,由于能源系统中的大多数传感器都暴露于高温,腐蚀性环境和高压下,因此在激烈的环境中进行温度感测很有必要。开发恶劣环境传感器的解决方案之一是使用陶瓷材料,特别是功能陶瓷,例如热电材料。由于热电陶瓷具有在机械,热学和电学领域之间耦合能量的能力,因此可用于开发用于温度和压力的有源传感器。在这项研究中,铌酸锂(LiNbO3)热电陶瓷材料用于开发高温应用的温度传感器。与其他热电陶瓷材料相比,LiNbO3具有较高的居里温度(1210摄氏度)。高居里温度的材料很重要,因为该材料的极化特性在居里温度以上会破裂。因此,使用居里温度较高的材料(例如LiNbO3)使其有望用作高温应用的传感材料。使用热电陶瓷铌酸锂(LiNbO3)作为传感器材料,进行了一项研究以主动测量高达500摄氏度的温度。由于LiNbO3的非线性热电响应,在高达500摄氏度的温度范围内,采用动态热电系数技术测量了LiNbO3的温度相关热电系数。发现LiNbO3的温度相关热电系数从-0.5升高。从室温到500摄氏度从x10(-5)到-3.70x10(-5)C / m(2)摄氏度。然后测试了LiNbO3传感器在220摄氏度,280摄氏度,410摄氏度下的更高温度感应C和500摄氏度,与热电偶测量值相比,分别显示出4.31%,2.1%,0.4%和0.6%的偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号