...
首页> 外文期刊>Journal of geodynamics >Using postglacial sea level, crustal velocities and gravity-rate-of-change to constrain the influence of thermal effects on mantle lateral heterogeneities
【24h】

Using postglacial sea level, crustal velocities and gravity-rate-of-change to constrain the influence of thermal effects on mantle lateral heterogeneities

机译:利用冰川后的海平面,地壳速度和重力变化率来限制热效应对地幔横向异质性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Lateral heterogeneities in the mantle can be caused by thermal, chemical and non-isotropic pre-stress effects. Here, we investigate the possibility of using observations of the glacial isostatic adjustment (G1A) process to constrain the thermal contribution to lateral variations in mantle viscosity. In particular, global historic relative sea level, GPS in Laurentide and Fennoscandia, altimetry together with tide-gauge data in the Great Lakes area, and GRACE data in Laurentide are used. The lateral viscosity perturbations are inferred from the seismic tomography model S20A by inserting the scaling factor β to determine the contribution of thermal effects versus compositional heterogeneity and non-isotropic pre-stress effects on lateral heterogeneity in mantle viscosity. When β= 1. lateral velocity variations are caused by thermal effects alone. With β<1, the contribution of thermal effect decreases, so that for β = 0, there is no lateral viscosity variation and the Earth is laterally homogeneous. These lateral viscosity variations are superposed on four different reference models which differ significantly in the lower mantle viscosity. The Coupled Laplace Finite Element method is used to predict the GIA response on a spherical, self-gravitating, compressible, viscoelastic Earth with self-gravitating oceans, induced by the ICE-4G deglaciation model. Results show that the effect of β on uplift rates and gravity rate-of-change is not simple and involves the trade-off between the contribution of lateral viscosity variations in the transition zone and in the lower mantle. Models with small viscosity contrast in the lower mantle cannot explain the observed uplift rates in Laurentide and Fennoscandia. However, the RF3S20 model with a reference viscosity profile simplified from Peltier's VM2 with the value of β around 0.2-0.4 is found to explain most of the global RSL data, the uplift rates in Laurentide and Fennoscandia and the BIFROST horizontal velocity data. In addition, the changes in GIA signals caused by changes in the value of β are large enough to be detected by the data, although uncertainty in other parameters in the GIA models still exists. This may encourage us to further utilize GIA observations to constrain the thermal effect on mantle lateral heterogeneity as geodetic and satellite gravity measurements are improved.
机译:地幔的横向异质性可能是由热,化学和非各向同性的预应力作用引起的。在这里,我们调查了使用冰川等静压调整(G1A)过程的观测值来限制热对地幔粘度横向变化的贡献的可能性。特别是,使用了全球历史相对海平面,Laurentide和Fennoscandia中的GPS,高程仪以及大湖区的潮汐仪数据以及Laurentide中的GRACE数据。通过插入比例因子β来确定热效应对成分非均质性的贡献以及非各向同性预应力效应对地幔粘度中横向非均质性的影响,从地震层析成像模型S20A推断出横向粘度扰动。当β= 1时,横向速度变化仅由热效应引起。当β<1时,热效应的贡献减小,因此对于β= 0,没有横向粘度变化,地球在横向上是均匀的。这些横向粘度变化叠加在四个不同的参考模型上,这些模型在下地幔粘度方面有很大差异。拉普拉斯有限元耦合法用于预测由ICE-4G脱冰模型引起的具有自重海洋的球形,自重,可压缩,粘弹性地球上的GIA响应。结果表明,β对隆升速率和重力变化率的影响并不简单,并且涉及过渡带和下地幔中侧向粘度变化的贡献之间的权衡。下地幔粘度对比小的模型无法解释在Laurentide和Fennoscandia中观测到的上升速率。然而,发现RF3S20模型具有从Peltier的VM2简化而来的参考粘度曲线,其β值在0.2-0.4左右,可以解释大多数全球RSL数据,Laurentide和Fennoscandia的上升速率以及BIFROST水平速度数据。此外,尽管GIA模型中其他参数的不确定性仍然存在,但由β值的变化引起的GIA信号的变化足以被数据检测到。随着大地测量和卫星重力测量的改善,这可能鼓励我们进一步利用GIA观测值来限制对地幔横向异质性的热效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号