首页> 外文期刊>Journal of Computational Electronics >A review of recent advances in the spherical harmonics expansion method for semiconductor device simulation
【24h】

A review of recent advances in the spherical harmonics expansion method for semiconductor device simulation

机译:球形谐波扩展方法在半导体器件仿真中的最新进展综述

获取原文
获取原文并翻译 | 示例
           

摘要

The Boltzmann transport equation is commonly considered to be the best semi-classical description of carrier transport in semiconductors, providing precise information about the distribution of carriers with respect to time (one dimension), location (three dimensions), and momentum (three dimensions). However, numerical solutions for the seven-dimensional carrier distribution functions are very demanding. The most common solution approach is the stochastic Monte Carlo method, because the gigabytes of memory requirements of deterministic direct solution approaches has not been available until recently. As a remedy, the higher accuracy provided by solutions of the Boltzmann transport equation is often exchanged for lower computational expense by using simpler models based on macroscopic quantities such as carrier density and mean carrier velocity. Recent developments for the deterministic spherical harmonics expansion method have reduced the computational cost for solving the Boltzmann transport equation, enabling the computation of carrier distribution functions even for spatially three-dimensional device simulations within minutes to hours. We summarize recent progress for the spherical harmonics expansion method and show that small currents, reasonable execution times, and rare events such as low-frequency noise, which are all hard or even impossible to simulate with the established Monte Carlo method, can be handled in a straight-forward manner. The applicability of the method for important practical applications is demonstrated for noise simulation, small-signal analysis, hot-carrier degradation, and avalanche breakdown.
机译:玻耳兹曼输运方程通常被认为是半导体中载流子传输的最佳半经典描述,它提供了关于载流子相对于时间(一个维度),位置(三个维度)和动量(三个维度)的分布的精确信息。 。但是,对于七维载流子分布函数的数值解是非常苛刻的。最常见的解决方案方法是随机的蒙特卡洛方法,因为确定性直接解决方案方法所需的千兆字节内存需求直到最近才可用。作为补救措施,通过使用基于宏观量(例如载流子密度和平均载流子速度)的更简单模型,通常可以将玻耳兹曼输运方程解提供的更高的精度换成较低的计算量。确定性球谐展开方法的最新发展降低了求解玻尔兹曼输运方程的计算成本,即使在数分钟至数小时内进行空间三维设备仿真,也可以计算载流子分布函数。我们总结了球谐函数展开法的最新进展,并表明可以用已建立的蒙特卡洛方法很难模拟甚至无法模拟的小电流,合理的执行时间以及诸如低频噪声之类的罕见事件。直截了当的方式。演示了该方法在重要的实际应用中的适用性,可用于噪声仿真,小信号分析,热载流子降级和雪崩击穿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号