首页> 外文期刊>Journal of Applied Physics >Modelling of crater formation on anode surface by high-current vacuum arcs
【24h】

Modelling of crater formation on anode surface by high-current vacuum arcs

机译:大电流真空电弧在阳极表面形成火山口的模型

获取原文
获取原文并翻译 | 示例
           

摘要

Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.
机译:阳极熔化和火山口形成会严重影响大电流真空电弧的中断。本文的主要目的是从理论上研究由真空电弧期间的表面加热和电弧等离子体中的离子和电子对熔融表面施加的压力共同作用引起的阳极表面火山口形成的机理。建立了电弧阳极中流体流动和传热的模型,并将其与真空电弧等离子体的磁流体动力学模型相结合。在模拟中观察到在40 mm直径上峰值电弧放电电流大于15 kA时形成了火山口。铜电极间隔10毫米。液态金属在电弧放电4或5 ms后开始流动,对于20 kA和25 kA电弧,最大速度分别为0.95 m / s和1.39 m / s。这种流动会重新分配热能,并且阳极表面的最高温度不会保留在中心。而且,开发了在阳极表面上形成液滴的条件。还分析了电流为零后的凝固过程。已经发现,在25 kA电弧放电后,固化时间超过3 ms。较长的凝固时间和陨石坑边缘的尖锐特征会诱发泰勒锥的形成。

著录项

  • 来源
    《Journal of Applied Physics》 |2016年第18期|183302.1-183302.10|共10页
  • 作者单位

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;

    State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China;

    Department of Physics and Helsinki Institute of Physics, University of Helsinki, PB 43,00014 Helsinki, Finland and National Research Nuclear University MEPhI, 31, Kashirskoe sh., 115409 Moscow, Russia;

    Department of Physics and Helsinki Institute of Physics, University of Helsinki, PB 43,00014 Helsinki, Finland and National Research Nuclear University MEPhI, 31, Kashirskoe sh., 115409 Moscow, Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号