...
首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >A High-Frequency Phased Array System for Transcranial Ultrasound Delivery in Small Animals
【24h】

A High-Frequency Phased Array System for Transcranial Ultrasound Delivery in Small Animals

机译:小型动物中经颅超声送入的高频相控阵系统

获取原文
获取原文并翻译 | 示例
           

摘要

Existing systems for applying transcranial focused ultrasound (FUS) in small animals produce large focal volumes relative to the size of cerebral structures available for interrogation. The use of high ultrasonic frequencies can improve targeting specificity; however, the aberrations induced by rodent calvaria at megahertz frequencies severely distort the acoustic fields produced by single-element focused transducers. Here, we present the design, fabrication, and characterization of a high-frequency phased array system for transcranial FUS delivery in small animals. A transducer array was constructed by micromachining a spherically curved PZT-5H bowl (diameter = 25 mm, radius of curvature = 20 mm, fundamental frequency = 3.3 MHz) into 64 independent elements of equal surface area. The acousticfield generatedby the phased array was measured at various target locations using a calibrated fiber-optic hydrophone, both in free-field conditions as well as through ex vivo rat skullcapswith and without hydrophone-assistedphase aberration corrections. Large field-of-view acoustic field simulations were carried out to investigate potential grating lobe formation. The focal beam size obtained when targeting the array's geometric focus was 0.4mmx0.4mmx2.6mm in water. The array can steer the FUS beam electronically over cylindrical volumes of 4.5 mm in diameter and 6 mm in height without introducing grating lobes. Insertion of a rat skullcap resulted in substantial distortion of the acoustic field (p(no corrs) = 24 +/- 4% p(water)); however, phase corrections restored partial focal quality (p(skull corrs) = 31 +/- 3% p(water)). Using phase corrections, the array is capable of generating a trans-rat skull peak negative focal pressure of up to similar to 2.0 MPa, which is sufficient for microbubble-mediated blood-brain barrier permeabilization at this frequency.
机译:在小型动物中施加经颅上聚焦超声(FUS)的现有系统相对于可用于询问的脑结构的大小,产生大的焦平体积。使用高超声频率可以提高靶向特异性;然而,啮齿动物Calvaria在Megahertz频率诱导的像差严重扭曲单元素聚焦换能器产生的声场。在这里,我们介绍了小型动物中的高频相控阵系统的设计,制造和表征。通过将球形弯曲的PZT-5H碗(直径= 25mm,曲率半径= 20mm,基频= 3.3MHz)进行微机械地构建换能器阵列,进入64个相等的表面积的独立元件。在使用校准的纤维 - 光学器中,在自由场条件以及通过离体辅助校正和辅助辅助异常像差校正的各种目标位置,在各个目标位置产生分阶段阵列的分阶段阵列。进行了大型视野模拟以研究电位光栅叶片形成。瞄准阵列的几何焦点时获得的焦束尺寸为0.4mmx0.4mmx2.6mm。阵列可以以电线为4.5mm的圆柱形容积以4.5mm的高度和6mm的高度为转向,而不会引入光栅凸杆。 rats Skullcap的插入导致声场的显着变形(p(无腐蚀)= 24 +/- 4%p(水));然而,相位校正恢复了部分焦点质量(P(Skull Corrs)= 31 +/- 3%P(水))。使用相位校正,阵列能够产生多达2.0MPa的反式大鼠颅底负焦点,这足以在这种频率下进行微泡介导的血脑屏障渗透。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号