...
首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Parallel Receive Beamforming Improves the Performance of Focused Transmit-Based Single-Track Location Shear Wave Elastography
【24h】

Parallel Receive Beamforming Improves the Performance of Focused Transmit-Based Single-Track Location Shear Wave Elastography

机译:平行接收波束成形改善了基于聚焦的基于透射的单轨位置剪切波弹性造影的性能

获取原文
获取原文并翻译 | 示例
           

摘要

Single-track location shear wave elastography (STL-SWEI) is robust against speckle-induced noise in shear wave speed (SWS) estimates; however, it is not immune to other incoherent sources of noise (such as electronic noise) that increases the variance in SWS estimates. Although estimation averaging enabled by parallel receive beamforming adequately suppresses these noise sources, these beamforming techniques often rely on broad transmit beams (plane or diverging). While broad beam approaches, such as plane-wave imaging, are becoming ubiquitous in research ultrasound systems, clinical systems usually employ focused transmit beams due to compatibility with hardware beamforming and deeper penetration. Consequently, improving the noise robustness of focused transmit-based STL-SWEI may enable easier translation to clinical scenarios. In this article, we experimentally evaluated the performance of parallel beamforming for STL-SWEI using fixed or multiple transmit focus. By imaging tissue-mimicking phantoms, we found that parallel beamforming improved the focal zone elastographic signal-to-noise ratio (SNRe) by 40.9%. For a receive line spacing equivalent to transducer pitch, averaging estimates from three parallel lines produced peak SNRe at the focal zone (25 mm), while, at the shallower regions (< 20 mm), a larger number of parallel lines (>7) were needed. Increasing the beamforming line density by a factor of 8 increased the focal zone SNRe only by 13.2%. When SWS quantification was desirable at a fixed depth (such as within the push focal depth), using a deeper tracking focal zone enabled higher parallel line count and improved the peak SNRe by 33%. The multifocusing strategy produced a lower SNRe than the single-focus configurations. For a fixed tracking focal zone, a depth-dependent averaging based on the simulated transmit intensity adequately accounted for the transmit beamwidth. The results in this work demonstrated that STL-SWEI can be implemented using focused transmit beams with robust noise-suppression capability.
机译:单轨定位剪切波弹性造影(STL-SWEI)对剪力波速(SWS)估计的散斑诱导噪声具有稳健;然而,它并不对其他不连贯的噪声源(例如电子噪声)免疫,这增加了SWS估计的方差。尽管通过并行接收波束成形使能的估计平均充分地抑制了这些噪声源,但这些波束形成技术通常依赖于宽发射波束(平面或发散)。虽然广泛的光束方法,例如平面波成像,在研究超声系统中变得普遍存在,但临床系统通常采用聚焦传输光束,因为与硬件波束形成和更深的渗透率兼容。因此,提高了基于传输的STL-SWEI的噪声稳健性,可以使更容易转换到临床场景。在本文中,我们通过固定或多个传输焦点评估了STL-SWEI的并行波束形成的性能。通过成像组织模拟幻像,我们发现并行波束形成改善了焦区弹性引导信噪比(SNRE)的40.9%。对于相当于传感器间距的接收线间距,从焦区(25mm)的三个平行线产生峰值SNRE的平均估计,而在较浅的区域(<20mm),较大数量的平行线(> 7)需要。将波束形成线密度提高8倍,焦平区塞勒仅增加13.2%。当在固定深度(例如在推焦深度)处所需的SWS定量时,使用更深的跟踪焦区,使能更高的平行线计数并将峰值SNRE提高33%。多焦策略产生比单焦配置的较低的SNRE。对于固定的跟踪焦点区域,基于模拟的发射强度的深度依赖平均适用于发射波束宽度。该工作中的结果表明,STL-SWEI可以使用具有稳健的噪声抑制能力的聚焦发射光束来实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号