...
首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Design considerations for piezoelectric polymer ultrasound transducers
【24h】

Design considerations for piezoelectric polymer ultrasound transducers

机译:压电聚合物超声换能器的设计注意事项

获取原文
获取原文并翻译 | 示例
           

摘要

Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a MylarTM front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.
机译:关于使用压电陶瓷的超声换能器设计的许多工作已经出版,但是当使用压电聚合物时,由于其独特的电气和机械性能,许多这项工作并不适用。本文的目的是回顾和提出对有源压电聚合物超声换能器设计的七个重要考虑的新见解:压电聚合物材料的选择,换能器的构造和包装要求,材料表征和建模,膜厚度和有源区域设计,电镀选择,背衬材料设计以及正面保护/匹配层设计。除了回顾这些设计考虑因素之外,本文还提供了对有源压电聚合物超声换能器设计的新见解。包括在有源元件和衬里层之间没有粘合剂层的可浸入式超声换能器的设计和制造。该传感器具有将聚偏二氟乙烯-三氟乙烯[P(VDF-TrFE)]共聚物直接沉积到绝缘的铝背衬基板上的功能。脉冲回波测试表明,最小插入损耗为37 dB,-6 dB带宽为9.8至22 MHz(71%)。还讨论了聚合物磨损保护/四分之一波长匹配层的使用。在P(VDF-TrFE)换能器上的测试结果表明,MylarTM前层使脉冲回波幅度稍微增加了15%(或1.2 dB),并使-6 dB脉冲回波分数带宽从86增大到95 %。报道了理论推导,其用于优化压电聚合物元件的有源区域,以在共振时实现最大功率传递。这些推导扩展到了针对薄型(即薄型)屏蔽换能器的特殊情况。还包括一种用于对商用脉冲接收器的非线性负载效应进行建模的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号