...
首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Pyroelectric energy conversion: optimization principles
【24h】

Pyroelectric energy conversion: optimization principles

机译:热电能量转换:优化原理

获取原文
获取原文并翻译 | 示例
           

摘要

In the framework of microgenerators, we present in this paper the key points for energy harvesting from temperature using ferroelectric materials. Thermoelectric devices profit from temperature spatial gradients, whereas ferroelectric materials require temporal fluctuation of temperature, thus leading to different applications targets. Ferroelectric materials may harvest perfectly the available thermal energy whatever the materials properties (limited by Carnot conversion efficiency) whereas thermoelectric material''s efficiency is limited by materials properties (ZT figure of merit). However, it is shown that the necessary electric fields for Carnot cycles are far beyond the breakdown limit of bulk ferroelectric materials. Thin films may be an excellent solution for rising up to ultra-high electric fields and outstanding efficiency. Different thermodynamic cycles are presented in the paper: principles, advantages, and drawbacks. Using the Carnot cycle, the harvested energy would be independent of materials properties. However, using more realistic cycles, the energy conversion effectiveness remains dependent on the materials properties as discussed in the paper. A particular coupling factor is defined to quantify and check the effectiveness of pyroelectric energy harvesting. It is defined similarly to an electromechanical coupling factor as k2 = p2thetas0/(epsivthetas 33 CE), where p, thetas0, epsivthetas 33, Ce are pyroelectric coefficient, maximum working temperature, dielectric permittivity, and specific heat, respectively. The importance of the electrothermal coupling factor is shown and discussed as an energy harvesting figure of merit. It gives the effectiveness of all techniques of energy harvesting (except the Carnot cycle). It is finally shown that we could reach very high efficiency using lang111rang0.75Pb(Mg1/3Nb2/3)-0.25PbTiO3 single crystals and synchronized switch harvesting on inductor (almost 50% of Carnot efficiency). Finally, practical implementation key points of pyroelectric energy harvesting are presented showing that the different thermodynamic cycles are feasible and potentially effective, even compared to thermoelectric devices.
机译:在微型发电机的框架中,我们提出了使用铁电材料从温度中收集能量的关键点。热电设备从温度空间梯度中获利,而铁电材料需要温度随时间变化,因此导致了不同的应用目标。无论材料的性能如何(受卡诺转换效率的限制),铁电材料都可以完美地获取可用的热能,而热电材料的效率则受材料的性能(ZT品质因数)的限制。但是,结果表明,卡诺循环所需的电场远远超出了块状铁电材料的击穿极限。薄膜对于上升到超高电场和出色的效率可能是一个很好的解决方案。本文介绍了不同的热力学循环:原理,优点和缺点。使用卡诺循环,所收集的能量将与材料特性无关。但是,使用更实际的循环,能量转换效率仍然取决于本文中讨论的材料属性。定义了特定的耦合因子以量化和检查热电能量收集的有效性。类似于机电耦合因子,其定义为k2 = p2thes0 /(epsivthetas 33 CE),其中p,thetas0,epsivthetas 33,Ce分别是热电系数,最高工作温度,介电常数和比热。显示并讨论了电热耦合因子的重要性,作为能量收集的品质因数。它提供了所有能量收集技术(卡诺循环除外)的有效性。最终表明,使用lang111rang0.75Pb(Mg1 / 3Nb2 / 3)-0.25PbTiO3单晶并在感应器上同步开关收集(几乎达到卡诺效率的50%),我们可以达到很高的效率。最后,提出了热电能量收集的实际实施要点,表明即使与热电装置相比,不同的热力学循环也是可行的并且可能有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号