...
首页> 外文期刊>Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on >Effect of ultrasonic capillary dynamics on the mechanics of thermosonic ball bonding
【24h】

Effect of ultrasonic capillary dynamics on the mechanics of thermosonic ball bonding

机译:超声毛细管动力学对热超声球键合力学的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Microelectronic wire bonding is an essential step in today's microchip production. It is used to weld (bond) microwires to metallized pads of integrated circuits using ultrasound with hundreds of thousands of vibration cycles. Thermosonic ball bonding is the most popular variant of the wire bonding process and frequently investigated using finite element (FE) models that simplify the ultrasonic dynamics of the process with static or quasistatic boundary conditions. In this study, the ultrasonic dynamics of the bonding tool (capillary), made from Al2O3, is included in a FE model. For more accuracy of the FE model, the main material parameters are measured. The density of the capillary was measured to be ?cap = 3552 ? 100 kg/m3. The elastic modulus of the capillary, Ecap = 389 ? 11 GPa, is found by comparing an auxiliary FE model of the free vibrating capillary with measured values. A capillary "nodding effect" is identified and found to be essential when describing the ultrasonic vibration shape. A main FE model builds on these results and adds bonded ball, pad, chip, and die attach components. There is excellent agreement between the main model and the ultrasonic force measured at the interface on a test chip with stress microsensors. Bonded ball and underpad stress results are reported. When adjusted to the same ultrasonic force, a simplified model without ultrasonic dynamics and with an infinitely stiff capillary tip is substantially off target by -40% for the maximum underpad stress. The compliance of the capillary causes a substantial inclination effect at the bonding interface between wire and pad. This oscillating inclination effect massively influences the stress fields under the pad and is studied in more detail. For more accurate results, it is therefore recommended to include ultrasonic dynamics of the bonding tool in mechanical FE models of wire bonding.
机译:微电子引线键合是当今微芯片生产中必不可少的步骤。它用于通过具有数十万次振动循环的超声波将微丝焊接(结合)到集成电路的金属化焊盘上。热超声球焊是引线键合工艺中最流行的变体,经常使用有限元(FE)模型进行研究,该模型简化了具有静态或准静态边界条件的工艺的超声动力学。在这项研究中,FE模型包括了由Al2O3制成的粘接工具(毛细管)的超声动力学。为了提高有限元模型的准确性,需要测量主要材料参数。测得的毛细管密度为εcap=3552Ω。 100公斤/立方米。毛细管的弹性模量,Ecap = 389?通过将自由振动毛细管的辅助有限元模型与测量值进行比较,可得出11 GPa。在描述超声振动形状时,毛细管“点头效应”被确定为必不可少的。一个主要的有限元模型基于这些结果,并增加了键合球,焊盘,芯片和管芯连接组件。在具有应力微传感器的测试芯片上,主模型与在界面上测得的超声波力之间有着极好的一致性。报告了粘合球和垫的应力结果。当调整到相同的超声波力时,对于最大垫下应力而言,没有超声波动力学且具有无限刚性毛细管尖端的简化模型基本上偏离目标-40%。毛细管的顺应性会在导线和焊盘之间的接合界面处产生明显的倾斜效果。这种摆动的倾斜作用在很大程度上影响了垫下的应力场,并进行了更详细的研究。为了获得更准确的结果,因此建议在引线键合的机械有限元模型中包括键合工具的超声动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号