...
首页> 外文期刊>Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on >Analyses of the temperature field of traveling-wave rotary ultrasonic motors
【24h】

Analyses of the temperature field of traveling-wave rotary ultrasonic motors

机译:行波旋转超声电机的温度场分析

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the transient and steady-state temperature field of a traveling-wave rotary ultrasonic motor is analyzed by the finite element method, based on a theoretical model of power loss of this motor in rated operation. Using this model, the temperature field of this motor is calculated and the effects of the heat conductivity of friction material, motor size, ambient temperature, and pressure on the temperature field are estimated. The calculated temperature distribution and transient temperature change agree with the experimental results. The variation of heat conductivity of the friction material has little effect on the minimum temperature in the motor but this variation seriously affects the maximum temperature in the motor when the heat conductivity of the friction material is lower than 0.5 W/(m°C). Two indices are defined to express the non-uniformity of temperature field and how quickly the temperature field reaches its steady state for traveling-wave ultrasonic motors of different sizes. It is found that traveling-wave ultrasonic motors with different sizes have different nonuniformity of temperature field and take different amounts of time to reach thermal steady state. The maximum temperature rise is lower when the ambient temperature is higher; the maximum temperature increases as the vacuum degree increases and it is not affected by the vacuum degree when the vacuum degree is too high (<;10-3 Pa).
机译:在此基础上,基于额定运行功率损失的理论模型,通过有限元方法对行波旋转超声电机的瞬态和稳态温度场进行了分析。使用该模型,可以计算出电动机的温度场,并估算摩擦材料的导热系数,电动机尺寸,环境温度和压力对温度场的影响。计算得到的温度分布和瞬态温度变化与实验结果吻合。摩擦材料的导热系数的变化对电动机的最低温度影响很小,但是当摩擦材料的导热系数低于0.5 W /(m°C)时,这种变化会严重影响电动机的最高温度。定义了两个指标来表示温度场的不均匀性,以及不同大小的行波超声电机温度场达到稳态的速度。结果发现,不同尺寸的行波超声波电动机具有不同的温度场不均匀性,并且需要不同的时间才能达到热稳定状态。当环境温度较高时,最大温升较低;最高温度随着真空度的增加而增加,并且当真空度过高(<; 10 -3 Pa)时不受最高真空度的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号